[1]
|
Kumar, R., Ivy, N., Bhattacharya, S., Dey, A. and Sharma, P. (2022) Coupled Effects of Microplastics and Heavy Metals on Plants: Uptake, Bioaccumulation, and Environmental Health Perspectives. Science of the Total Environment, 836, Article ID: 155619. https://doi.org/10.1016/j.scitotenv.2022.155619
|
[2]
|
Serrano-Ruiz, H., Martin-Closas, L. and Pelacho, A.M. (2021) Biodegradable Plastic Mulches: Impact on the Agricultural Biotic Environment. Science of the Total Environment, 750, Article ID: 141228. https://doi.org/10.1016/j.scitotenv.2020.141228
|
[3]
|
Kim, Y., Yoon, J. and Kim, K. (2021) Microplastic Contamination in Soil Environment—A Review. Soil Science Annual, 71, 300-308. https://doi.org/10.37501/soilsa/131646
|
[4]
|
Dai, Y., Shi, J., Zhang, N., Pan, Z., Xing, C. and Chen, X. (2021) Current Research Trends on Microplastics Pollution and Impacts on Agro-Ecosystems: A Short Review. Separation Science and Technology, 57, 656-669. https://doi.org/10.1080/01496395.2021.1927094
|
[5]
|
Astner, A.F., Gillmore, A.B., Yu, Y., Flury, M., DeBruyn, J.M., Schaeffer, S.M., et al. (2023) Formation, Behavior, Properties and Impact of Micro-and Nanoplastics on Agricultural Soil Ecosystems (a Review). NanoImpact, 31, Article ID: 100474. https://doi.org/10.1016/j.impact.2023.100474
|
[6]
|
Cordier, M., Uehara, T., Jorgensen, B. and Baztan, J. (2024) Reducing Plastic Production: Economic Loss or Environmental Gain? Cambridge Prisms: Plastics, 2, e2. https://doi.org/10.1017/plc.2024.3
|
[7]
|
Ng, E., Huerta Lwanga, E., Eldridge, S.M., Johnston, P., Hu, H., Geissen, V., et al. (2018) An Overview of Microplastic and Nanoplastic Pollution in Agroecosystems. Science of the Total Environment, 627, 1377-1388. https://doi.org/10.1016/j.scitotenv.2018.01.341
|
[8]
|
Kader, M.A., Singha, A., Begum, M.A., Jewel, A., Khan, F.H. and Khan, N.I. (2019) Mulching as Water-Saving Technique in Dryland Agriculture: Review Article. Bulletin of the National Research Centre, 43, Article No. 147. https://doi.org/10.1186/s42269-019-0186-7
|
[9]
|
Awolesi, O., Oni, P. and Arwenyo, B. (2023) Microplastics and Nano-Plastics: From Initiation to Termination. Journal of Geoscience and Environment Protection, 11, 249-280. https://doi.org/10.4236/gep.2023.111016
|
[10]
|
Campanale, C., Galafassi, S., Di Pippo, F., Pojar, I., Massarelli, C. and Uricchio, V.F. (2024) A Critical Review of Biodegradable Plastic Mulch Films in Agriculture: Definitions, Scientific Background and Potential Impacts. TrAC Trends in Analytical Chemistry, 170, Article ID: 117391. https://doi.org/10.1016/j.trac.2023.117391
|
[11]
|
Geyer, R., Jambeck, J.R. and Law, K.L. (2017) Production, Use, and Fate of All Plastics Ever Made. Science Advances, 3, e1700782. https://doi.org/10.1126/sciadv.1700782
|
[12]
|
Okeke, E.S., Chukwudozie, K.I., Addey, C.I., Okoro, J.O., Chidike Ezeorba, T.P., Atakpa, E.O., et al. (2023) Micro and Nanoplastics Ravaging Our Agroecosystem: A Review of Occurrence, Fate, Ecological Impacts, Detection, Remediation, and Prospects. Heliyon, 9, e13296. https://doi.org/10.1016/j.heliyon.2023.e13296
|
[13]
|
Habib, R.Z., Thiemann, T. and Al Kendi, R. (2020) Microplastics and Wastewater Treatment Plants—A Review. Journal of Water Resource and Protection, 12, 1-35. https://doi.org/10.4236/jwarp.2020.121001
|
[14]
|
Alimi, O.S., Farner Budarz, J., Hernandez, L.M. and Tufenkji, N. (2018) Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environmental Science & Technology, 52, 1704-1724. https://doi.org/10.1021/acs.est.7b05559
|
[15]
|
Kasmuri, N., Tarmizi, N.A.A. and Mojiri, A. (2022) Occurrence, Impact, Toxicity, and Degradation Methods of Microplastics in Environment—A Review. Environmental Science and Pollution Research, 29, 30820-30836. https://doi.org/10.1007/s11356-021-18268-7
|
[16]
|
Silva, G.C., Galleguillos Madrid, F.M., Hernández, D., Pincheira, G., Peralta, A.K., Urrestarazu Gavilán, M., et al. (2021) Microplastics and Their Effect in Horticultural Crops: Food Safety and Plant Stress. Agronomy, 11, Article No. 1528. https://doi.org/10.3390/agronomy11081528
|
[17]
|
Sa’adu, I. and Farsang, A. (2023) Plastic Contamination in Agricultural Soils: A Review. Environmental Sciences Europe, 35, Article No. 13. https://doi.org/10.1186/s12302-023-00720-9
|
[18]
|
Ansari, A.A., Naeem, M., Gill, S.S. and Siddiqui, Z.H. (2022) Plastics in the Soil Environment: An Overview. In: Naeem, M., et al., Eds., Agrochemicals in Soil and Environment: Impacts and Remediation, Springer Nature, 347-363. https://doi.org/10.1007/978-981-16-9310-6_15
|
[19]
|
Li, Y., Chen, J., Dong, Q., Feng, H. and Siddique, K.H.M. (2022) Plastic Mulching Significantly Improves Soil Enzyme and Microbial Activities without Mitigating Gaseous N Emissions in Winter Wheat-Summer Maize Rotations. Field Crops Research, 286, Article ID: 108630. https://doi.org/10.1016/j.fcr.2022.108630
|
[20]
|
Sajjad, M., Huang, Q., Khan, S., Khan, M.A., Liu, Y., Wang, J., et al. (2022) Microplastics in the Soil Environment: A Critical Review. Environmental Technology & Innovation, 27, Article ID: 102408. https://doi.org/10.1016/j.eti.2022.102408
|
[21]
|
Das, P.P., Singh, A., Chaudhary, V., Gupta, P. and Gupta, S. (2023) Biodegradability of Agricultural Plastic Waste. In: Sarkar, A., Sharma, B. and Shekha, S., Eds., Biodegradability of Conventional Plastics, Elsevier, 243-257. https://doi.org/10.1016/b978-0-323-89858-4.00010-5
|
[22]
|
Jin, T., Tang, J., Lyu, H., Wang, L., Gillmore, A.B. and Schaeffer, S.M. (2022) Activities of Microplastics (MPs) in Agricultural Soil: A Review of MPs Pollution from the Perspective of Agricultural Ecosystems. Journal of Agricultural and Food Chemistry, 70, 4182-4201. https://doi.org/10.1021/acs.jafc.1c07849
|
[23]
|
Bouwmeester, H., Hollman, P.C.H. and Peters, R.J.B. (2015) Potential Health Impact of Environmentally Released Micro-and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environmental Science & Technology, 49, 8932-8947. https://doi.org/10.1021/acs.est.5b01090
|
[24]
|
Qi, Y., Yang, X., Pelaez, A.M., Huerta Lwanga, E., Beriot, N., Gertsen, H., et al. (2018) Macro-and Micro-Plastics in Soil-Plant System: Effects of Plastic Mulch Film Residues on Wheat (Triticum aestivum) Growth. Science of the Total Environment, 645, 1048-1056. https://doi.org/10.1016/j.scitotenv.2018.07.229
|
[25]
|
Pérez-Reverón, R., Álvarez-Méndez, S.J., Kropp, R.M., Perdomo-González, A., Hernández-Borges, J. and Díaz-Peña, F.J. (2022) Microplastics in Agricultural Systems: Analytical Methodologies and Effects on Soil Quality and Crop Yield. Agriculture, 12, Article No. 1162. https://doi.org/10.3390/agriculture12081162
|
[26]
|
Tang, K.H.D. (2023) Microplastics in Agricultural Soils in China: Sources, Impacts and Solutions. Environmental Pollution, 322, Article ID: 121235. https://doi.org/10.1016/j.envpol.2023.121235
|
[27]
|
Lian, Y., Liu, W., Shi, R., Zeb, A., Wang, Q., Li, J., et al. (2022) Effects of Polyethylene and Polylactic Acid Microplastics on Plant Growth and Bacterial Community in the Soil. Journal of Hazardous Materials, 435, Article ID: 129057. https://doi.org/10.1016/j.jhazmat.2022.129057
|
[28]
|
Islam, M.R., Ruponti, S.A., Rakib, M.A., Nguyen, H.Q. and Mourshed, M. (2022) Current Scenario and Challenges of Plastic Pollution in Bangladesh: A Focus on Farmlands and Terrestrial Ecosystems. Frontiers of Environmental Science & Engineering, 17, Article No. 66. https://doi.org/10.1007/s11783-023-1666-4
|
[29]
|
Verma, K.K., Song, X., Xu, L., Huang, H., Liang, Q., Seth, C.S., et al. (2023) Nano-microplastic and Agro-Ecosystems: A Mini-Review. Frontiers in Plant Science, 14, Article ID: 1283852. https://doi.org/10.3389/fpls.2023.1283852
|
[30]
|
Tripathi, D.K., Shweta, Singh, S., Singh, S., Pandey, R., Singh, V.P., et al. (2017) An Overview on Manufactured Nanoparticles in Plants: Uptake, Translocation, Accumulation and Phytotoxicity. Plant Physiology and Biochemistry, 110, 2-12. https://doi.org/10.1016/j.plaphy.2016.07.030
|
[31]
|
Shafea, L., Yap, J., Beriot, N., Felde, V.J.M.N.L., Okoffo, E.D., Enyoh, C.E., et al. (2022) Microplastics in Agroecosystems: A Review of Effects on Soil Biota and Key Soil Functions. Journal of Plant Nutrition and Soil Science, 186, 5-22. https://doi.org/10.1002/jpln.202200136
|
[32]
|
Ren, X., Yin, S., Wang, L. and Tang, J. (2022) Microplastics in Plant-Microbes-Soil System: A Review on Recent Studies. Science of the Total Environment, 816, Article ID: 151523. https://doi.org/10.1016/j.scitotenv.2021.151523
|
[33]
|
Qiu, Y., Zhou, S., Zhang, C., Zhou, Y. and Qin, W. (2022) Soil Microplastic Characteristics and the Effects on Soil Properties and Biota: A Systematic Review and Meta-analysis. Environmental Pollution, 313, Article ID: 120183. https://doi.org/10.1016/j.envpol.2022.120183
|
[34]
|
de Souza Machado, A.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., Faltin, E., et al. (2019) Microplastics Can Change Soil Properties and Affect Plant Performance. Environmental Science & Technology, 53, 6044-6052. https://doi.org/10.1021/acs.est.9b01339
|
[35]
|
Amobonye, A., Bhagwat, P., Raveendran, S., Singh, S. and Pillai, S. (2021) Environmental Impacts of Microplastics and Nanoplastics: A Current Overview. Frontiers in Microbiology, 12, Article ID: 768297. https://doi.org/10.3389/fmicb.2021.768297
|
[36]
|
Qian, H., Zhang, M., Liu, G., Lu, T., Qu, Q., Du, B., et al. (2018) Effects of Soil Residual Plastic Film on Soil Microbial Community Structure and Fertility. Water, Air, & Soil Pollution, 229, Article No. 261. https://doi.org/10.1007/s11270-018-3916-9
|
[37]
|
Rillig, M.C. (2018) Microplastic Disguising as Soil Carbon Storage. Environmental Science & Technology, 52, 6079-6080. https://doi.org/10.1021/acs.est.8b02338
|
[38]
|
Rillig, M.C., Hoffmann, M., Lehmann, A., Liang, Y., Lück, M. and Augustin, J. (2021) Microplastic Fibers Affect Dynamics and Intensity of CO2 and N2O Fluxes from Soil Differently. Microplastics and Nanoplastics, 1, Article No. 3. https://doi.org/10.1186/s43591-021-00004-0
|
[39]
|
Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., et al. (2008) Australian Climate-Carbon Cycle Feedback Reduced by Soil Black Carbon. Nature Geoscience, 1, 832-835. https://doi.org/10.1038/ngeo358
|
[40]
|
Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., et al. (2017) Response of Soil Dissolved Organic Matter to Microplastic Addition in Chinese Loess Soil. Chemosphere, 185, 907-917. https://doi.org/10.1016/j.chemosphere.2017.07.064
|
[41]
|
Liu, H., Yang, X., Liang, C., Li, Y., Qiao, L., Ai, Z., et al. (2019) Interactive Effects of Microplastics and Glyphosate on the Dynamics of Soil Dissolved Organic Matter in a Chinese Loess Soil. Catena, 182, Article ID: 104177. https://doi.org/10.1016/j.catena.2019.104177
|
[42]
|
Sun, Y., Li, X., Cao, N., Duan, C., Ding, C., Huang, Y., et al. (2022) Biodegradable Microplastics Enhance Soil Microbial Network Complexity and Ecological Stochasticity. Journal of Hazardous Materials, 439, Article ID: 129610. https://doi.org/10.1016/j.jhazmat.2022.129610
|
[43]
|
Iqbal, S., Xu, J., Allen, S.D., Khan, S., Nadir, S., Arif, M.S., et al. (2020) Unraveling Consequences of Soil Micro-and Nano-Plastic Pollution on Soil-Plant System: Implications for Nitrogen (N) Cycling and Soil Microbial Activity. Chemosphere, 260, Article ID: 127578. https://doi.org/10.1016/j.chemosphere.2020.127578
|
[44]
|
Salam, M., Zheng, H., Liu, Y., Zaib, A., Rehman, S.A.U., Riaz, N., et al. (2023) Effects of Micro(nano)plastics on Soil Nutrient Cycling: State of the Knowledge. Journal of Environmental Management, 344, Article ID: 118437. https://doi.org/10.1016/j.jenvman.2023.118437
|
[45]
|
Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W. and Qin, X. (2019) LDPE Microplastic Films Alter Microbial Community Composition and Enzymatic Activities in Soil. Environmental Pollution, 254, Article ID: 112983. https://doi.org/10.1016/j.envpol.2019.112983
|
[46]
|
Xiao, M., Shahbaz, M., Liang, Y., Yang, J., Wang, S., Chadwicka, D.R., et al. (2021) Effect of Microplastics on Organic Matter Decomposition in Paddy Soil Amended with Crop Residues and Labile C: A Three-Source-Partitioning Study. Journal of Hazardous Materials, 416, Article ID: 126221. https://doi.org/10.1016/j.jhazmat.2021.126221
|
[47]
|
Feng, X., Wang, Q., Sun, Y., Zhang, S. and Wang, F. (2022) Microplastics Change Soil Properties, Heavy Metal Availability and Bacterial Community in a Pb-Zn-Contaminated Soil. Journal of Hazardous Materials, 424, Article ID: 127364. https://doi.org/10.1016/j.jhazmat.2021.127364
|
[48]
|
Yan, S., Zhang, S., Xu, B., Yan, P., Wang, J., Wang, H., et al. (2023) Microplastics Change the Leaching of Nitrogen and Potassium in Mollisols. Science of The Total Environment, 878, Article ID: 163121. https://doi.org/10.1016/j.scitotenv.2023.163121
|
[49]
|
Lozano, Y.M., Aguilar-Trigueros, C.A., Onandia, G., Maaß, S., Zhao, T. and Rillig, M.C. (2021) Effects of Microplastics and Drought on Soil Ecosystem Functions and Multifunctionality. Journal of Applied Ecology, 58, 988-996. https://doi.org/10.1111/1365-2664.13839
|
[50]
|
Sun, H., Ai, L., Wu, X., Dai, Y., Jiang, C., Chen, X., et al. (2023) Effects of Microplastic Pollution on Agricultural Soil and Crops Based on a Global Meta-Analysis. Land Degradation & Development, 35, 551-567. https://doi.org/10.1002/ldr.4957
|
[51]
|
Zhao, T., Lozano, Y.M. and Rillig, M.C. (2021) Microplastics Increase Soil Ph and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time. Frontiers in Environmental Science, 9, Article ID: 675803. https://doi.org/10.3389/fenvs.2021.675803
|
[52]
|
Lozano, Y.M. and Rillig, M.C. (2020) Effects of Microplastic Fibers and Drought on Plant Communities. Environmental Science & Technology, 54, 6166-6173. https://doi.org/10.1021/acs.est.0c01051
|
[53]
|
Blöcker, L., Watson, C. and Wichern, F. (2020) Living in the Plastic Age—Different Short-Term Microbial Response to Microplastics Addition to Arable Soils with Contrasting Soil Organic Matter Content and Farm Management Legacy. Environmental Pollution, 267, Article ID: 115468. https://doi.org/10.1016/j.envpol.2020.115468
|
[54]
|
Chia, R.W., Lee, J., Lee, M., Lee, G. and Jeong, C. (2023) Role of Soil Microplastic Pollution in Climate Change. Science of the Total Environment, 887, Article ID: 164112. https://doi.org/10.1016/j.scitotenv.2023.164112
|
[55]
|
Ren, X., Tang, J., Liu, X. and Liu, Q. (2020) Effects of Microplastics on Greenhouse Gas Emissions and the Microbial Community in Fertilized Soil. Environmental Pollution, 256, Article ID: 113347. https://doi.org/10.1016/j.envpol.2019.113347
|
[56]
|
Gao, B., Yao, H., Li, Y. and Zhu, Y. (2020) Microplastic Addition Alters the Microbial Community Structure and Stimulates Soil Carbon Dioxide Emissions in Vegetable-Growing Soil. Environmental Toxicology and Chemistry, 40, 352-365. https://doi.org/10.1002/etc.4916
|
[57]
|
Kim, S.W., Liang, Y., Zhao, T. and Rillig, M.C. (2021) Indirect Effects of Microplastic-Contaminated Soils on Adjacent Soil Layers: Vertical Changes in Soil Physical Structure and Water Flow. Frontiers in Environmental Science, 9, Article ID: 681934. https://doi.org/10.3389/fenvs.2021.681934
|
[58]
|
Wang, F., Wang, Q., Adams, C.A., Sun, Y. and Zhang, S. (2022) Effects of Microplastics on Soil Properties: Current Knowledge and Future Perspectives. Journal of Hazardous Materials, 424, Article ID: 127531. https://doi.org/10.1016/j.jhazmat.2021.127531
|
[59]
|
Laughlin, R.J., Rütting, T., Müller, C., Watson, C.J. and Stevens, R.J. (2009) Effect of Acetate on Soil Respiration, N2O Emissions and Gross N Transformations Related to Fungi and Bacteria in a Grassland Soil. Applied Soil Ecology, 42, 25-30. https://doi.org/10.1016/j.apsoil.2009.01.004
|
[60]
|
Zhou, J., Gui, H., Banfield, C.C., Wen, Y., Zang, H., Dippold, M.A., et al. (2021) The Microplastisphere: Biodegradable Microplastics Addition Alters Soil Microbial Community Structure and Function. Soil Biology and Biochemistry, 156, Article ID: 108211. https://doi.org/10.1016/j.soilbio.2021.108211
|
[61]
|
Zhang, S., Pei, L., Zhao, Y., Shan, J., Zheng, X., Xu, G., et al. (2023) Effects of Microplastics and Nitrogen Deposition on Soil Multifunctionality, Particularly C and N Cycling. Journal of Hazardous Materials, 451, Article ID: 131152. https://doi.org/10.1016/j.jhazmat.2023.131152
|
[62]
|
Li, J., Yu, C., Liu, Z., Wang, Y. and Wang, F. (2023) Microplastic Accelerate the Phosphorus-Related Metabolism of Bacteria to Promote the Decomposition of Methylphosphonate to Methane. Science of the Total Environment, 858, Article ID: 160020. https://doi.org/10.1016/j.scitotenv.2022.160020
|
[63]
|
Su, P., Gao, C., Zhang, X., Zhang, D., Liu, X., Xiang, T., et al. (2023) Microplastics Stimulated Nitrous Oxide Emissions Primarily through Denitrification: A Meta-Analysis. Journal of Hazardous Materials, 445, Article ID: 130500. https://doi.org/10.1016/j.jhazmat.2022.130500
|
[64]
|
Yu, Y., Li, X., Feng, Z., Xiao, M., Ge, T., Li, Y., et al. (2022) Polyethylene Microplastics Alter the Microbial Functional Gene Abundances and Increase Nitrous Oxide Emissions from Paddy Soils. Journal of Hazardous Materials, 432, Article ID: 128721. https://doi.org/10.1016/j.jhazmat.2022.128721
|
[65]
|
Qiang, L., Hu, H., Li, G., Xu, J., Cheng, J., Wang, J., et al. (2023) Plastic Mulching, and Occurrence, Incorporation, Degradation, and Impacts of Polyethylene Microplastics in Agroecosystems. Ecotoxicology and Environmental Safety, 263, Article ID: 115274. https://doi.org/10.1016/j.ecoenv.2023.115274
|
[66]
|
Yadav, S., Gupta, E., Patel, A., Srivastava, S., Mishra, V.K., Singh, P.C., et al. (2022) Unravelling the Emerging Threats of Microplastics to Agroecosystems. Reviews in Environmental Science and Bio/Technology, 21, 771-798. https://doi.org/10.1007/s11157-022-09621-4
|
[67]
|
Iqbal, B., Zhao, T., Yin, W., Zhao, X., Xie, Q., Khan, K.Y., et al. (2023) Impacts of Soil Microplastics on Crops: A Review. Applied Soil Ecology, 181, Article ID: 104680. https://doi.org/10.1016/j.apsoil.2022.104680
|
[68]
|
Gao, H., Yan, C., Liu, Q., Ding, W., Chen, B. and Li, Z. (2019) Effects of Plastic Mulching and Plastic Residue on Agricultural Production: A Meta-analysis. Science of The Total Environment, 651, 484-492. https://doi.org/10.1016/j.scitotenv.2018.09.105
|
[69]
|
Bouaicha, O., Mimmo, T., Tiziani, R., Praeg, N., Polidori, C., Lucini, L., et al. (2022) Microplastics Make Their Way into the Soil and Rhizosphere: A Review of the Ecological Consequences. Rhizosphere, 22, Article ID: 100542. https://doi.org/10.1016/j.rhisph.2022.100542
|
[70]
|
Kalčíková, G., Skalar, T., Marolt, G. and Jemec Kokalj, A. (2020) An Environmental Concentration of Aged Microplastics with Adsorbed Silver Significantly Affects Aquatic Organisms. Water Research, 175, Article ID: 115644. https://doi.org/10.1016/j.watres.2020.115644
|
[71]
|
Azeem, I., Adeel, M., Ahmad, M.A., Shakoor, N., Jiangcuo, G.D., Azeem, K., et al. (2021) Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials, 11, Article No. 2935. https://doi.org/10.3390/nano11112935
|
[72]
|
Bandmann, V., Müller, J.D., Köhler, T. and Homann, U. (2012) Uptake of Fluorescent Nano Beads into BY2-Cells Involves Clathrin-Dependent and Clathrin-Independent Endocytosis. FEBS Letters, 586, 3626-3632. https://doi.org/10.1016/j.febslet.2012.08.008
|
[73]
|
Wiedner, K. and Polifka, S. (2020) Effects of Microplastic and Microglass Particles on Soil Microbial Community Structure in an Arable Soil (Chernozem). Soil, 6, 315-324. https://doi.org/10.5194/soil-6-315-2020
|
[74]
|
Ullah, R., Tsui, M.T., Chen, H., Chow, A., Williams, C. and Ligaba-Osena, A. (2021) Microplastics Interaction with Terrestrial Plants and Their Impacts on Agriculture. Journal of Environmental Quality, 50, 1024-1041. https://doi.org/10.1002/jeq2.20264
|
[75]
|
Dong, Y., Gao, M., Qiu, W. and Song, Z. (2021) Uptake of Microplastics by Carrots in Presence of as (III): Combined Toxic Effects. Journal of Hazardous Materials, 411, Article ID: 125055. https://doi.org/10.1016/j.jhazmat.2021.125055
|
[76]
|
Hernández-Arenas, R., Beltrán-Sanahuja, A., Navarro-Quirant, P. and Sanz-Lazaro, C. (2021) The Effect of Sewage Sludge Containing Microplastics on Growth and Fruit Development of Tomato Plants. Environmental Pollution, 268, Article ID: 115779. https://doi.org/10.1016/j.envpol.2020.115779
|
[77]
|
Jia, L., Liu, L., Zhang, Y., Fu, W., Liu, X., Wang, Q., et al. (2023) Microplastic Stress in Plants: Effects on Plant Growth and Their Remediations. Frontiers in Plant Science, 14, Article ID: 1226484. https://doi.org/10.3389/fpls.2023.1226484
|
[78]
|
Bosker, T., Bouwman, L.J., Brun, N.R., Behrens, P. and Vijver, M.G. (2019) Microplastics Accumulate on Pores in Seed Capsule and Delay Germination and Root Growth of the Terrestrial Vascular Plant Lepidium Sativum. Chemosphere, 226, 774-781. https://doi.org/10.1016/j.chemosphere.2019.03.163
|
[79]
|
Zhang, Q., Zhao, M., Meng, F., Xiao, Y., Dai, W. and Luan, Y. (2021) Effect of Polystyrene Microplastics on Rice Seed Germination and Antioxidant Enzyme Activity. Toxics, 9, Article No. 179. https://doi.org/10.3390/toxics9080179
|
[80]
|
Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M. and Klobučar, G. (2019) Ecotoxicity and Genotoxicity of Polystyrene Microplastics on Higher Plant Vicia Faba. Environmental Pollution, 250, 831-838. https://doi.org/10.1016/j.envpol.2019.04.055
|
[81]
|
Meng, F., Yang, X., Riksen, M., Xu, M. and Geissen, V. (2021) Response of Common Bean (Phaseolus vulgaris L.) Growth to Soil Contaminated with Microplastics. Science of the Total Environment, 755, Article ID: 142516. https://doi.org/10.1016/j.scitotenv.2020.142516
|
[82]
|
Tong, Y., Ding, J., Xiao, M., Shahbaz, M., Zhu, Z., Chen, M., et al. (2022) Microplastics Affect Activity and Spatial Distribution of C, N, and P Hydrolases in Rice Rhizosphere. Soil Ecology Letters, 5, Article ID: 220138. https://doi.org/10.1007/s42832-022-0138-2
|
[83]
|
Khalid, N., Aqeel, M. and Noman, A. (2020) Microplastics Could Be a Threat to Plants in Terrestrial Systems Directly or Indirectly. Environmental Pollution, 267, Article ID: 115653. https://doi.org/10.1016/j.envpol.2020.115653
|
[84]
|
Greenfield, L.M., Graf, M., Rengaraj, S., Bargiela, R., Williams, G., Golyshin, P.N., et al. (2022) Field Response of N2O Emissions, Microbial Communities, Soil Biochemical Processes and Winter Barley Growth to the Addition of Conventional and Biodegradable Microplastics. Agriculture, Ecosystems & Environment, 336, Article ID: 108023. https://doi.org/10.1016/j.agee.2022.108023
|
[85]
|
Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H. and AbdulGhani, A. (2022) Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Current Research in Green and Sustainable Chemistry, 5, Article ID: 100273. https://doi.org/10.1016/j.crgsc.2022.100273
|
[86]
|
Evode, N., Qamar, S.A., Bilal, M., Barceló, D. and Iqbal, H.M.N. (2021) Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Studies in Chemical and Environmental Engineering, 4, Article ID: 100142. https://doi.org/10.1016/j.cscee.2021.100142
|
[87]
|
Alhazmi, H., Almansour, F.H. and Aldhafeeri, Z. (2021) Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability, 13, Article No. 5340. https://doi.org/10.3390/su13105340
|
[88]
|
Zhang, G.S., Zhang, F.X. and Li, X.T. (2019) Effects of Polyester Microfibers on Soil Physical Properties: Perception from a Field and a Pot Experiment. Science of the Total Environment, 670, 1-7. https://doi.org/10.1016/j.scitotenv.2019.03.149
|
[89]
|
Ingraffia, R., Amato, G., Bagarello, V., Carollo, F.G., Giambalvo, D., Iovino, M., Lehmann, A., Rillig, M.C. and Frenda, A.S. (2021) Polyester Microplastic Fibers Affect Soil Physical Properties and Erosion as a Function of Soil Type. Soil, 8, 421-435.
|
[90]
|
de Souza Machado, A.A., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R., et al. (2018) Impacts of Microplastics on the Soil Biophysical Environment. Environmental Science & Technology, 52, 9656-9665. https://doi.org/10.1021/acs.est.8b02212
|
[91]
|
Lozano, Y.M., Lehnert, T., Linck, L.T., Lehmann, A. and Rillig, M.C. (2021) Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass. Frontiers in Plant Science, 12, Article ID: 616645. https://doi.org/10.3389/fpls.2021.616645
|
[92]
|
Qi, Y., Beriot, N., Gort, G., Huerta Lwanga, E., Gooren, H., Yang, X., et al. (2020) Impact of Plastic Mulch Film Debris on Soil Physicochemical and Hydrological Properties. Environmental Pollution, 266, Article ID: 115097. https://doi.org/10.1016/j.envpol.2020.115097
|
[93]
|
Guo, J., Huang, X., Xiang, L., Wang, Y., Li, Y., Li, H., et al. (2020) Source, Migration and Toxicology of Microplastics in Soil. Environment International, 137, Article ID: 105263. https://doi.org/10.1016/j.envint.2019.105263
|
[94]
|
Lei, L., Liu, M., Song, Y., Lu, S., Hu, J., Cao, C., et al. (2018) Polystyrene (Nano)microplastics Cause Size-Dependent Neurotoxicity, Oxidative Damage and Other Adverse Effects in Caenorhabditis elegans. Environmental Science: Nano, 5, 2009-2020. https://doi.org/10.1039/c8en00412a
|
[95]
|
Boots, B., Russell, C.W. and Green, D.S. (2019) Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environmental Science & Technology, 53, 11496-11506. https://doi.org/10.1021/acs.est.9b03304
|
[96]
|
Lehmann, A., Fitschen, K. and Rillig, M.C. (2019) Abiotic and Biotic Factors Influencing the Effect of Microplastic on Soil Aggregation. Soil Systems, 3, Article No. 21. https://doi.org/10.3390/soilsystems3010021
|
[97]
|
Fei, Y., Huang, S., Zhang, H., Tong, Y., Wen, D., Xia, X., et al. (2020) Response of Soil Enzyme Activities and Bacterial Communities to the Accumulation of Microplastics in an Acid Cropped Soil. Science of the Total Environment, 707, Article ID: 135634. https://doi.org/10.1016/j.scitotenv.2019.135634
|
[98]
|
Yi, M., Zhou, S., Zhang, L. and Ding, S. (2020) The Effects of Three Different Microplastics on Enzyme Activities and Microbial Communities in Soil. Water Environment Research, 93, 24-32. https://doi.org/10.1002/wer.1327
|