[1]
|
Knopman, D.S., Amieva, H., Petersen, R.C., Chételat, G., Holtzman, D.M., Hyman, B.T., et al. (2021) Alzheimer Disease. Nature Reviews Disease Primers, 7, Article No. 33. https://doi.org/10.1038/s41572-021-00269-y
|
[2]
|
Haass, C. and Selkoe, D.J. (2007) Soluble Protein Oligomers in Neurodegeneration: Lessons from the Alzheimer’s Amyloid β-Peptide. Nature Reviews Molecular Cell Biology, 8, 101-112. https://doi.org/10.1038/nrm2101
|
[3]
|
Goedert, M., Spillantini, M.G., Jakes, R., Rutherford, D. and Crowther, R.A. (1989) Multiple Isoforms of Human Microtubule-Associated Protein Tau: Sequences and Localization in Neurofibrillary Tangles of Alzheimer’s Disease. Neuron, 3, 519-526. https://doi.org/10.1016/0896-6273(89)90210-9
|
[4]
|
What Happens to the Brain in Alzheimer’s Disease? https://www.nia.nih.gov/health/alzheimers-causes-and-risk-factors/what-happens-brain-alzheimers-disease
|
[5]
|
Barage, S.H. and Sonawane, K.D. (2015) Amyloid Cascade Hypothesis: Pathogenesis and Therapeutic Strategies in Alzheimer’s Disease. Neuropeptides, 52, 1-18. https://doi.org/10.1016/j.npep.2015.06.008
|
[6]
|
Kocahan, S. and Doğan, Z. (2017) Mechanisms of Alzheimer’s Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N-Methyl-D-Aspartate Receptors, Tau Protein and Other Risk Factors. Clinical Psychopharmacology and Neuroscience, 15, 1-8. https://doi.org/10.9758/cpn.2017.15.1.1
|
[7]
|
Ferreira-Vieira, H.T., Guimaraes, M.I., Silva, R.F. and Ribeiro, M.F. (2016) Alzheimer’s Disease: Targeting the Cholinergic System. Current Neuropharmacology, 14, 101-115. https://doi.org/10.2174/1570159x13666150716165726
|
[8]
|
Gong, C. and Iqbal, K. (2008) Hyperphosphorylation of Microtubule-Associated Protein Tau: A Promising Therapeutic Target for Alzheimer Disease. Current Medicinal Chemistry, 15, 2321-2328. https://doi.org/10.2174/092986708785909111
|
[9]
|
Bondi, M.W., Edmonds, E.C. and Salmon, D.P. (2017) Alzheimer’s Disease: Past, Present, and Future. Journal of the International Neuropsychological Society, 23, 818-831. https://doi.org/10.1017/s135561771700100x
|
[10]
|
McGirr, S., Venegas, C. and Swaminathan, A. (2020) Alzheimer’s Disease: A Brief Review. Journal of Experimental Neurology, 1, 89-98.
|
[11]
|
Alzheimer’s Association (2024): Approved Treatments for Alzheimer’s. https://alz.org/media/documents/alzheimers-dementia-fda-approved-treatments-for-alzheimers-ts.pdf
|
[12]
|
Patnaik, N. (2015) Cure for Alzheimer’s Disease. World Journal of Neuroscience, 5, 328-330. https://doi.org/10.4236/wjns.2015.55030
|
[13]
|
Cummings, J., Lee, G., Ritter, A. and Zhong, K. (2018) Alzheimer’s Disease Drug Development Pipeline: 2018. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 4, 195-214. https://doi.org/10.1016/j.trci.2018.03.009
|
[14]
|
Cummings, J., Zhou, Y., Lee, G., Zhong, K., Fonseca, J. and Cheng, F. (2024) Alzheimer’s Disease Drug Development Pipeline: 2024. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 10, e12465. https://doi.org/10.1002/trc2.12465
|
[15]
|
Liu, H., Yang, J., Wang, L., Xu, Y., Zhang, S., Lv, J., et al. (2017) Targeting β-Amyloid Plaques and Oligomers: Development of Near-Ir Fluorescence Imaging Probes. Future Medicinal Chemistry, 9, 179-198. https://doi.org/10.4155/fmc-2016-0185
|
[16]
|
Parsons, C.G. and Rammes, G. (2017) Preclinical to Phase II Amyloid Beta (aβ) Peptide Modulators under Investigation for Alzheimer’s Disease. Expert Opinion on Investigational Drugs, 26, 579-592. https://doi.org/10.1080/13543784.2017.1313832
|
[17]
|
Iraji, A., Khoshneviszadeh, M., Firuzi, O., Khoshneviszadeh, M. and Edraki, N. (2020) Novel Small Molecule Therapeutic Agents for Alzheimer Disease: Focusing on BACE1 and Multi-Target Directed Ligands. Bioorganic Chemistry, 97, Article ID: 103649. https://doi.org/10.1016/j.bioorg.2020.103649
|
[18]
|
Jeremic, D., Jiménez-Díaz, L. and Navarro-López, J.D. (2021) Past, Present and Future of Therapeutic Strategies against Amyloid-β Peptides in Alzheimer’s Disease: A Systematic Review. Ageing Research Reviews, 72, Article ID: 101496. https://doi.org/10.1016/j.arr.2021.101496
|
[19]
|
Folch, J., Ettcheto, M., Petrov, D., Abad, S., Pedrós, I., Marin, M., et al. (2018) Review of the Advances in Treatment for Alzheimer Disease: Strategies for Combating β-Amyloid Protein. Neurología (English Edition), 33, 47-58. https://doi.org/10.1016/j.nrleng.2015.03.019
|
[20]
|
Llufriu-Dabén, G., Carrete, A., Chierto, E., Mailleux, J., Camand, E., Simon, A., et al. (2018) Targeting Demyelination via Α-Secretases Promoting sAPPα Release to Enhance Remyelination in Central Nervous System. Neurobiology of Disease, 109, 11-24. https://doi.org/10.1016/j.nbd.2017.09.008
|
[21]
|
Yen, H., Yen, H. and Chi, C. (2020) Is Psoriasis Associated with Dementia or Cognitive Impairment? A Critically Appraised Topic. British Journal of Dermatology, 184, 34-42. https://doi.org/10.1111/bjd.19025
|
[22]
|
Andrade, S., Ramalho, M.J., Loureiro, J.A. and Pereira, M.d.C. (2019) Natural Compounds for Alzheimer’s Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. International Journal of Molecular Sciences, 20, Article No. 2313. https://doi.org/10.3390/ijms20092313
|
[23]
|
Thompson, R.E., Tuchman, A.J. and Alkon, D.L. (2022) Bryostatin Placebo-Controlled Trials Indicate Cognitive Restoration above Baseline for Advanced Alzheimer’s Disease in the Absence of Memantine1. Journal of Alzheimer’s Disease, 86, 1221-1229. https://doi.org/10.3233/jad-215545
|
[24]
|
Taléns-Visconti, R., de Julián-Ortiz, J.V., Vila-Busó, O., Diez-Sales, O. and Nácher, A. (2023) Intranasal Drug Administration in Alzheimer-Type Dementia: Towards Clinical Applications. Pharmaceutics, 15, Article No. 1399. https://doi.org/10.3390/pharmaceutics15051399
|
[25]
|
Ray, B., Maloney, B., Sambamurti, K., Karnati, H.K., Nelson, P.T., Greig, N.H., et al. (2020) Rivastigmine Modifies the Α-Secretase Pathway and Potentially Early Alzheimer’s Disease. Translational Psychiatry, 10, Article No. 47. https://doi.org/10.1038/s41398-020-0709-x
|
[26]
|
McCarthy, J.V., Twomey, C. and Wujek, P. (2009) Presenilin-Dependent Regulated Intramembrane Proteolysis and γ-Secretase Activity. Cellular and Molecular Life Sciences, 66, 1534-1555. https://doi.org/10.1007/s00018-009-8435-9
|
[27]
|
Mekala, S., Nelson, G. and Li, Y. (2020) Recent Developments of Small Molecule γ-Secretase Modulators for Alzheimer’s Disease. RSC Medicinal Chemistry, 11, 1003-1022. https://doi.org/10.1039/d0md00196a
|
[28]
|
Luo, J.E. and Li, Y. (2022) Turning the Tide on Alzheimer’s Disease: Modulation of γ-Secretase. Cell & Bioscience, 12, Article No. 2. https://doi.org/10.1186/s13578-021-00738-7
|
[29]
|
Kounnas, M.Z., Lane‐Donovan, C., Nowakowski, D.W., Herz, J. and Comer, W.T. (2016) NGP 555, a γ‐Secretase Modulator, Lowers the Amyloid Biomarker, Aβ42, in Cerebrospinal Fluid While Preventing Alzheimer’s Disease Cognitive Decline in Rodents. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3, 65-73. https://doi.org/10.1016/j.trci.2016.09.003
|
[30]
|
Kounnas, M.Z., Durakoglugil, M.S., Herz, J. and Comer, W.T. (2019) NGP 555, a γ‐secretase Modulator, Shows a Beneficial Shift in the Ratio of Amyloid Biomarkers in Human Cerebrospinal Fluid at Safe Doses. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, 458-467. https://doi.org/10.1016/j.trci.2019.06.006
|
[31]
|
May, P.C., Willis, B.A., Lowe, S.L., Dean, R.A., Monk, S.A., Cocke, P.J., et al. (2015) The Potent BACE1 Inhibitor LY2886721 Elicits Robust Central Aβ Pharmacodynamic Responses in Mice, Dogs, and Humans. The Journal of Neuroscience, 35, 1199-1210. https://doi.org/10.1523/jneurosci.4129-14.2015
|
[32]
|
Yao, W., Yang, H. and Yang, J. (2022) Small-Molecule Drugs Development for Alzheimer’s Disease. Frontiers in Aging Neuroscience, 14, Article ID: 1019412. https://doi.org/10.3389/fnagi.2022.1019412
|
[33]
|
Lo, A.C., Evans, C.D., Mancini, M., Wang, H., Shcherbinin, S., Lu, M., et al. (2021) Phase II (NAVIGATE-AD Study) Results of LY3202626 Effects on Patients with Mild Alzheimer’s Disease Dementia. Journal of Alzheimer’s Disease Reports, 5, 321-336. https://doi.org/10.3233/adr-210296
|
[34]
|
Hey, J.A., Yu, J.Y., Versavel, M., Abushakra, S., Kocis, P., Power, A., et al. (2017) Clinical Pharmacokinetics and Safety of ALZ-801, a Novel Prodrug of Tramiprosate in Development for the Treatment of Alzheimer’s Disease. Clinical Pharmacokinetics, 57, 315-333. https://doi.org/10.1007/s40262-017-0608-3
|
[35]
|
Tolar, M., Hey, J., Power, A. and Abushakra, S. (2021) Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer’s Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. International Journal of Molecular Sciences, 22, 6355. https://doi.org/10.3390/ijms22126355
|
[36]
|
Tolar, M., Abushakra, S., Hey, J.A., Porsteinsson, A. and Sabbagh, M. (2020) Aducanumab, Gantenerumab, BAN2401, and Alz-801—The First Wave of Amyloid-Targeting Drugs for Alzheimer’s Disease with Potential for near Term Approval. Alzheimer’s Research & Therapy, 12, Article No. 95. https://doi.org/10.1186/s13195-020-00663-w
|
[37]
|
Anavex Life Sciences Corp. New York September 14, 2023. https://www.anavex.com
|
[38]
|
Chen, X., Barrero, C.A., Vasquez-Del Carpio, R., Reddy, E.P., Fecchio, C., Merali, S., et al. (2021) Posiphen Reduces the Levels of Huntingtin Protein through Translation Suppression. Pharmaceutics, 13, Article No. 2109. https://doi.org/10.3390/pharmaceutics13122109
|
[39]
|
Fang, C., Hernandez, P., Liow, K., Damiano, E., Zetterberg, H., Blennow, K., et al. (2022) Buntanetap, a Novel Translational Inhibitor of Multiple Neurotoxic Proteins, Proves to Be Safe and Promising in Both Alzheimer’s and Parkinson’s Patients. The Journal of Prevention of Alzheimer’s Disease, 10, 25-33. https://doi.org/10.14283/jpad.2022.84
|
[40]
|
Liu, Y., Giunta, B., Zhou, H., Tan, J. and Wang, Y. (2012) Immunotherapy for Alzheimer Disease—The Challenge of Adverse Effects. Nature Reviews Neurology, 8, 465-469. https://doi.org/10.1038/nrneurol.2012.118
|
[41]
|
Arndt, J.W., Qian, F., Smith, B.A., Quan, C., Kilambi, K.P., Bush, M.W., et al. (2018) Structural and Kinetic Basis for the Selectivity of Aducanumab for Aggregated Forms of Amyloid-β. Scientific Reports, 8, Article No. 6412. https://doi.org/10.1038/s41598-018-24501-0
|
[42]
|
Sevigny, J., Chiao, P., Bussière, T., Weinreb, P.H., Williams, L., Maier, M., et al. (2016) The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature, 537, 50-56. https://doi.org/10.1038/nature19323
|
[43]
|
Linse, S., Scheidt, T., Bernfur, K., Vendruscolo, M., Dobson, C.M., Cohen, S.I.A., et al. (2020) Kinetic Fingerprints Differentiate the Mechanisms of Action of Anti-Aβ Antibodies. Nature Structural & Molecular Biology, 27, 1125-1133. https://doi.org/10.1038/s41594-020-0505-6
|
[44]
|
Selkoe, D.J. (2019) Alzheimer Disease and Aducanumab: Adjusting Our Approach. Nature Reviews Neurology, 15, 365-366. https://doi.org/10.1038/s41582-019-0205-1
|
[45]
|
Budd, H.S., Aisen, P.S., Barkhof, F., et al. (2022) Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. The Journal of Prevention of Alzheimer’s Disease, 9, 197-210.
|
[46]
|
Dhillon, S. (2021) Aducanumab: First Approval. Drugs, 81, 1437-1443. https://doi.org/10.1007/s40265-021-01569-z
|
[47]
|
Mintun, M.A., Lo, A.C., Duggan Evans, C., Wessels, A.M., Ardayfio, P.A., Andersen, S.W., et al. (2021) Donanemab in Early Alzheimer’s Disease. New England Journal of Medicine, 384, 1691-1704. https://doi.org/10.1056/nejmoa2100708
|
[48]
|
Logovinsky, V., Satlin, A., Lai, R., Swanson, C., Kaplow, J., Osswald, G., et al. (2016) Safety and Tolerability of BAN2401—A Clinical Study in Alzheimer’s Disease with a Protofibril Selective Aβ Antibody. Alzheimer’s Research & Therapy, 8, Article No. 14. https://doi.org/10.1186/s13195-016-0181-2
|
[49]
|
Swanson, C.J., Zhang, Y., Dhadda, S., Wang, J., Kaplow, J., Lai, R.Y.K., et al. (2022) Correction: A Randomized, Double-Blind, Phase 2b Proof-of-Concept Clinical Trial in Early Alzheimer’s Disease with Lecanemab, an Anti-Aβ Protofibril Antibody. Alzheimer’s Research & Therapy, 14, Article No. 70. https://doi.org/10.1186/s13195-022-00995-9
|
[50]
|
Honig, L.S., Vellas, B., Woodward, M., Boada, M., Bullock, R., Borrie, M., et al. (2018) Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. New England Journal of Medicine, 378, 321-330. https://doi.org/10.1056/nejmoa1705971
|
[51]
|
Doody, R.S., Thomas, R.G., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., et al. (2014) Phase 3 Trials of Solanezumab for Mild-to-Moderate Alzheimer’s Disease. New England Journal of Medicine, 370, 311-321. https://doi.org/10.1056/nejmoa1312889
|
[52]
|
Adolfsson, O., Pihlgren, M., Toni, N., Varisco, Y., Buccarello, A.L., Antoniello, K., et al. (2012) An Effector-Reduced Anti-Amyloid (A) Antibody with Unique a Binding Properties Promotes Neuroprotection and Glial Engulfment of A. Journal of Neuroscience, 32, 9677-9689. https://doi.org/10.1523/jneurosci.4742-11.2012
|
[53]
|
Ostrowitzki, S., Bittner, T., Sink, K.M., Mackey, H., Rabe, C., Honig, L.S., et al. (2022) Evaluating the Safety and Efficacy of Crenezumab vs Placebo in Adults with Early Alzheimer Disease: Two Phase 3 Randomized Placebo-Controlled Trials. JAMA Neurology, 79, 1113-1121. https://doi.org/10.1001/jamaneurol.2022.2909
|
[54]
|
Bohrmann, B., Baumann, K., Benz, J., Gerber, F., Huber, W., Knoflach, F., et al. (2012) Gantenerumab: A Novel Human Anti-Aβ Antibody Demonstrates Sustained Cerebral Amyloid-β Binding and Elicits Cell-Mediated Removal of Human Amyloid-β. Journal of Alzheimer’s Disease, 28, 49-69. https://doi.org/10.3233/jad-2011-110977
|
[55]
|
Klein, G., Delmar, P., Voyle, N., Rehal, S., Hofmann, C., Abi-Saab, D., et al. (2019) Gantenerumab Reduces Amyloid-β Plaques in Patients with Prodromal to Moderate Alzheimer’s Disease: A PET Substudy Interim Analysis. Alzheimer’s Research & Therapy, 11, Article No. 101. https://doi.org/10.1186/s13195-019-0559-z
|
[56]
|
van Dyck, C.H. (2018) Anti-Amyloid-β Monoclonal Antibodies for Alzheimer’s Disease: Pitfalls and Promise. Biological Psychiatry, 83, 311-319. https://doi.org/10.1016/j.biopsych.2017.08.010
|
[57]
|
Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., et al. (2014) Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. New England Journal of Medicine, 370, 322-333. https://doi.org/10.1056/nejmoa1304839
|
[58]
|
Ayalon, G., Lee, S., Adolfsson, O., Foo-Atkins, C., Atwal, J.K., Blendstrup, M., et al. (2021) Antibody Semorinemab Reduces Tau Pathology in a Transgenic Mouse Model and Engages Tau in Patients with Alzheimer’s Disease. Science Translational Medicine, 13, eabb2639. https://doi.org/10.1126/scitranslmed.abb2639
|
[59]
|
Teng, E., Manser, P.T., Pickthorn, K., Brunstein, F., Blendstrup, M., Sanabria Bohorquez, S., et al. (2022) Safety and Efficacy of Semorinemab in Individuals with Prodromal to Mild Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurology, 79, Article No. 758. https://doi.org/10.1001/jamaneurol.2022.1375
|
[60]
|
Kim, B., Mikytuck, B., Suh, E., Gibbons, G.S., Van Deerlin, V.M., Vaishnavi, S.N., et al. (2021) Tau Immunotherapy Is Associated with Glial Responses in FTLD-TAU. Acta Neuropathologica, 142, 243-257. https://doi.org/10.1007/s00401-021-02318-y
|
[61]
|
Höglinger, G.U., Litvan, I., Mendonca, N., Wang, D., Zheng, H., Rendenbach-Mueller, B., et al. (2021) Safety and Efficacy of Tilavonemab in Progressive Supranuclear Palsy: A Phase 2, Randomised, Placebo-Controlled Trial. The Lancet Neurology, 20, 182-192. https://doi.org/10.1016/s1474-4422(20)30489-0
|
[62]
|
Albert, M., Mairet-Coello, G., Danis, C., Lieger, S., Caillierez, R., Carrier, S., et al. (2019) Prevention of Tau Seeding and Propagation by Immunotherapy with a Central Tau Epitope Antibody. Brain, 142, 1736-1750. https://doi.org/10.1093/brain/awz100
|
[63]
|
Ji, C. and Sigurdsson, E.M. (2021) Current Status of Clinical Trials on Tau Immunotherapies. Drugs, 81, 1135-1152. https://doi.org/10.1007/s40265-021-01546-6
|
[64]
|
Bijttebier, S., Theunis, C., Jahouh, F., Martins, D.R., Verhemeldonck, M., Grauwen, K., et al. (2021) Development of Immunoprecipitation—Two-Dimensional Liquid Chromatography—Mass Spectrometry Methodology as Biomarker Read-Out to Quantify Phosphorylated Tau in Cerebrospinal Fluid from Alzheimer Disease Patients. Journal of Chromatography A, 1651, Article ID: 462299. https://doi.org/10.1016/j.chroma.2021.462299
|
[65]
|
Roberts, M., Sevastou, I., Imaizumi, Y., Mistry, K., Talma, S., Dey, M., et al. (2020) Pre-Clinical Characterisation of E2814, a High-Affinity Antibody Targeting the Microtubule-Binding Repeat Domain of Tau for Passive Immunotherapy in Alzheimer’s Disease. Acta Neuropathologica Communications, 8, Article No. 13. https://doi.org/10.1186/s40478-020-0884-2
|
[66]
|
Sandusky-Beltran, L.A. and Sigurdsson, E.M. (2020) Tau Immunotherapies: Lessons Learned, Current Status and Future Considerations. Neuropharmacology, 175, Article ID: 108104. https://doi.org/10.1016/j.neuropharm.2020.108104
|
[67]
|
Kabir, M.T., Uddin, M.S., Mamun, A.A., Jeandet, P., Aleya, L., Mansouri, R.A., et al. (2020) Combination Drug Therapy for the Management of Alzheimer’s Disease. International Journal of Molecular Sciences, 21, Article No. 3272. https://doi.org/10.3390/ijms21093272
|
[68]
|
Morawski, M., Schilling, S., Kreuzberger, M., Waniek, A., Jäger, C., Koch, B., et al. (2014) Glutaminyl Cyclase in Human Cortex: Correlation with (PGLU)-Amyloid-β Load and Cognitive Decline in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 39, 385-400. https://doi.org/10.3233/jad-131535
|
[69]
|
Wirths, O., Breyhan, H., Cynis, H., Schilling, S., Demuth, H. and Bayer, T.A. (2009) Intraneuronal Pyroglutamate-Abeta 3-42 Triggers Neurodegeneration and Lethal Neurological Deficits in a Transgenic Mouse Model. Acta Neuropathologica, 118, 487-496. https://doi.org/10.1007/s00401-009-0557-5
|
[70]
|
Schlenzig, D., Cynis, H., Hartlage-Rübsamen, M., Zeitschel, U., Menge, K., Fothe, A., et al. (2018) Dipeptidyl-Peptidase Activity of Meprin β Links N-Truncation of Aβ with Glutaminyl Cyclase-Catalyzed Pglu-Aβ Formation. Journal of Alzheimer’s Disease, 66, 359-375. https://doi.org/10.3233/jad-171183
|
[71]
|
Hoffmann, T., Meyer, A., Heiser, U., Kurat, S., Böhme, L., Kleinschmidt, M., et al. (2017) Glutaminyl Cyclase Inhibitor PQ912 Improves Cognition in Mouse Models of Alzheimer’s Disease—Studies on Relation to Effective Target Occupancy. Journal of Pharmacology and Experimental Therapeutics, 362, 119-130. https://doi.org/10.1124/jpet.117.240614
|
[72]
|
Lues, I., Weber, F., Meyer, A., Bühring, U., Hoffmann, T., Kühn‐Wache, K., et al. (2015) A Phase 1 Study to Evaluate the Safety and Pharmacokinetics of PQ912, a Glutaminyl Cyclase Inhibitor, in Healthy Subjects. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 1, 182-195. https://doi.org/10.1016/j.trci.2015.08.002
|
[73]
|
Scheltens, P., Hallikainen, M., Grimmer, T., Duning, T., Gouw, A.A., Teunissen, C.E., et al. (2018) Safety, Tolerability and Efficacy of the Glutaminyl Cyclase Inhibitor PQ912 in Alzheimer’s Disease: Results of a Randomized, Double-Blind, Placebo-Controlled Phase 2a Study. Alzheimer’s Research & Therapy, 10, Article No. 107. https://doi.org/10.1186/s13195-018-0431-6
|
[74]
|
Hoffmann, T., Rahfeld, J., Schenk, M., Ponath, F., Makioka, K., Hutter-Paier, B., et al. (2021) Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Aβ Pathology in Transgenic Mice. International Journal of Molecular Sciences, 22, Article No. 11791. https://doi.org/10.3390/ijms222111791
|
[75]
|
Leinenga, G. and Götz, J. (2015) Scanning Ultrasound Removes Amyloid-β and Restores Memory in an Alzheimer’s Disease Mouse Model. Science Translational Medicine, 7, 278ra33. https://doi.org/10.1126/scitranslmed.aaa2512
|
[76]
|
Leinenga, G. and Götz, J. (2018) Safety and Efficacy of Scanning Ultrasound Treatment of Aged APP23 Mice. Frontiers in Neuroscience, 12, Article No. 55. https://doi.org/10.3389/fnins.2018.00055
|
[77]
|
Leinenga, G., Koh, W.K. and Götz, J. (2021) A Comparative Study of the Effects of Aducanumab and Scanning Ultrasound on Amyloid Plaques and Behavior in the APP23 Mouse Model of Alzheimer Disease. Alzheimer’s Research & Therapy, 13, Article No. 76. https://doi.org/10.1186/s13195-021-00809-4
|
[78]
|
Tolar, M., Abushakra, S., Hey, J.A., Porsteinsson, A. and Sabbagh, M. (2020) Aducanumab, Gantenerumab, BAN2401, and Alz-801—The First Wave of Amyloid-Targeting Drugs for Alzheimer’s Disease with Potential for near Term Approval. Alzheimer’s Research & Therapy, 12, Article No. 95. https://doi.org/10.1186/s13195-020-00663-w
|
[79]
|
Sehlin, D., Stocki, P., Gustavsson, T., Hultqvist, G., Walsh, F.S., Rutkowski, J.L., et al. (2020) Brain Delivery of Biologics Using a Cross‐Species Reactive Transferrin Receptor 1 VNAR Shuttle. The FASEB Journal, 34, 13272-13283. https://doi.org/10.1096/fj.202000610rr
|
[80]
|
Roshanbin, S., Xiong, M., Hultqvist, G., Söderberg, L., Zachrisson, O., Meier, S., et al. (2022) In Vivo Imaging of Alpha-Synuclein with Antibody-Based Pet. Neuropharmacology, 208, Article ID: 108985. https://doi.org/10.1016/j.neuropharm.2022.108985
|
[81]
|
Magnusson, K., Sehlin, D., Syvänen, S., Svedberg, M.M., Philipson, O., Söderberg, L., et al. (2013) Specific Uptake of an Amyloid-β Protofibril-Binding Antibody-Tracer in Aβpp Transgenic Mouse Brain. Journal of Alzheimer’s Disease, 37, 29-40. https://doi.org/10.3233/jad-130029
|
[82]
|
Yu, Y.J., Zhang, Y., Kenrick, M., Hoyte, K., Luk, W., Lu, Y., et al. (2011) Boosting Brain Uptake of a Therapeutic Antibody by Reducing Its Affinity for a Transcytosis Target. Science Translational Medicine, 3, 84ra44. https://doi.org/10.1126/scitranslmed.3002230
|
[83]
|
Hultqvist, G., Syvänen, S., Fang, X.T., Lannfelt, L. and Sehlin, D. (2017) Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor. Theranostics, 7, 308-318. https://doi.org/10.7150/thno.17155
|
[84]
|
Kariolis, M.S., Wells, R.C., Getz, J.A., Kwan, W., Mahon, C.S., Tong, R., et al. (2020) Brain Delivery of Therapeutic Proteins Using an Fc Fragment Blood-Brain Barrier Transport Vehicle in Mice and Monkeys. Science Translational Medicine, 12, eaay1359. https://doi.org/10.1126/scitranslmed.aay1359
|
[85]
|
Sehlin, D., Fang, X.T., Cato, L., Antoni, G., Lannfelt, L. and Syvänen, S. (2016) Antibody-Based PET Imaging of Amyloid Beta in Mouse Models of Alzheimer’s Disease. Nature Communications, 7, Article No. 10759. https://doi.org/10.1038/ncomms10759
|
[86]
|
Niewoehner, J., Bohrmann, B., Collin, L., Urich, E., Sade, H., Maier, P., et al. (2014) Increased Brain Penetration and Potency of a Therapeutic Antibody Using a Monovalent Molecular Shuttle. Neuron, 81, 49-60. https://doi.org/10.1016/j.neuron.2013.10.061
|
[87]
|
McConlogue, L., Buttini, M., Anderson, J.P., Brigham, E.F., Chen, K.S., Freedman, S.B., et al. (2007) Partial Reduction of BACE1 Has Dramatic Effects on Alzheimer Plaque and Synaptic Pathology in APP Transgenic Mice. Journal of Biological Chemistry, 282, 26326-26334. https://doi.org/10.1074/jbc.m611687200
|
[88]
|
Yanamandra, K., Jiang, H., Mahan, T.E., Maloney, S.E., Wozniak, D.F., Diamond, M.I., et al. (2015) Anti‐Tau Antibody Reduces Insoluble Tau and Decreases Brain Atrophy. Annals of Clinical and Translational Neurology, 2, 278-288. https://doi.org/10.1002/acn3.176
|
[89]
|
Rofo, F., Meier, S.R., Metzendorf, N.G., Morrison, J.I., Petrovic, A., Syvänen, S., et al. (2022) A Brain-Targeting Bispecific-Multivalent Antibody Clears Soluble Amyloid-Beta Aggregates in Alzheimer’s Disease Mice. Neurotherapeutics, 19, 1588-1602. https://doi.org/10.1007/s13311-022-01283-y
|
[90]
|
Ahmad, F. and Sachdeva, P. (2022) A Consolidated Review on Stem Cell Therapy for Treatment and Management of Alzheimer’s Disease. Aging Medicine, 5, 182-190. https://doi.org/10.1002/agm2.12216
|
[91]
|
Park, D., Yang, Y., Bae, D.K., Lee, S.H., Yang, G., Kyung, J., et al. (2013) Improvement of Cognitive Function and Physical Activity of Aging Mice by Human Neural Stem Cells Over-Expressing Choline Acetyltransferase. Neurobiology of Aging, 34, 2639-2646. https://doi.org/10.1016/j.neurobiolaging.2013.04.026
|
[92]
|
Kwak, K., Lee, S., Yang, J. and Park, Y. (2018) Current Perspectives Regarding Stem Cell-Based Therapy for Alzheimer’s Disease. Stem Cells International, 2018, Article ID: 6392986. https://doi.org/10.1155/2018/6392986
|
[93]
|
Duncan, T. and Valenzuela, M. (2017) Alzheimer’s Disease, Dementia, and Stem Cell Therapy. Stem Cell Research & Therapy, 8, Article No. 111. https://doi.org/10.1186/s13287-017-0567-5
|
[94]
|
Marsh, S.E. and Blurton-Jones, M. (2017) Neural Stem Cell Therapy for Neurodegenerative Disorders: The Role of Neurotrophic Support. Neurochemistry International, 106, 94-100. https://doi.org/10.1016/j.neuint.2017.02.006
|
[95]
|
Vasic, V., Barth, K. and Schmidt, M.H.H. (2019) Neurodegeneration and Neuro-Regeneration—Alzheimer’s Disease and Stem Cell Therapy. International Journal of Molecular Sciences, 20, Article No. 4272. https://doi.org/10.3390/ijms20174272
|
[96]
|
Li, M., Guo, K. and Ikehara, S. (2014) Stem Cell Treatment for Alzheimer’s Disease. International Journal of Molecular Sciences, 15, 19226-19238. https://doi.org/10.3390/ijms151019226
|
[97]
|
Fleifel, D., Rahmoon, M.A., AlOkda, A., Nasr, M., Elserafy, M. and El-Khamisy, S.F. (2018) Recent Advances in Stem Cells Therapy: A Focus on Cancer, Parkinson’s and Alzheimer’s. Journal of Genetic Engineering and Biotechnology, 16, 427-432. https://doi.org/10.1016/j.jgeb.2018.09.002
|
[98]
|
Cha, D.J., Mengel, D., Mustapic, M., Liu, W., Selkoe, D.J., Kapogiannis, D., et al. (2019) Mir-212 and Mir-132 Are Downregulated in Neurally Derived Plasma Exosomes of Alzheimer’s Patients. Frontiers in Neuroscience, 13, Article No. 1208. https://doi.org/10.3389/fnins.2019.01208
|
[99]
|
Kumar, S., Reddy, A.P., Yin, X. and Reddy, P.H. (2019) Novel Microrna-455-3p and Its Protective Effects against Abnormal APP Processing and Amyloid Beta Toxicity in Alzheimer’s Disease. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 2428-2440. https://doi.org/10.1016/j.bbadis.2019.06.006
|
[100]
|
Chopra, N., Wang, R., Maloney, B., Nho, K., Beck, J.S., Pourshafie, N., et al. (2020) Microrna-298 Reduces Levels of Human Amyloid-β Precursor Protein (APP), β-Site App-Converting Enzyme 1 (BACE1) and Specific Tau Protein Moieties. Molecular Psychiatry, 26, 5636-5657. https://doi.org/10.1038/s41380-019-0610-2
|
[101]
|
Gong, G., An, F., Wang, Y., Bian, M., Yu, L. and Wei, C. (2017) miR-15b Represses BACE1 Expression in Sporadic Alzheimer’s Disease. Oncotarget, 8, 91551-91557. https://doi.org/10.18632/oncotarget.21177
|
[102]
|
Zhang, P., Park, H., Zhang, J., Junn, E., Andrews, R.J., Velagapudi, S.P., et al. (2020) Translation of the Intrinsically Disordered Protein Α-Synuclein Is Inhibited by a Small Molecule Targeting Its Structured mRNA. Proceedings of the National Academy of Sciences, 117, 1457-1467. https://doi.org/10.1073/pnas.1905057117
|
[103]
|
Gabr, M.T. and Barbault, F. (2020) First Dual Binder of microRNA-146a and Monomeric Tau: A Novel Approach for Multitargeted Therapeutics for Neurodegenerative Diseases. Chemical Communications, 56, 9695-9698. https://doi.org/10.1039/d0cc04249h
|
[104]
|
Gu, S., Cui, D., Chen, X., Xiong, X. and Zhao, Y. (2018) PROTACs: An Emerging Targeting Technique for Protein Degradation in Drug Discovery. BioEssays, 40, Article ID: 1700247. https://doi.org/10.1002/bies.201700247
|
[105]
|
Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M. and Deshaies, R.J. (2001) Protacs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-f Box Complex for Ubiquitination and Degradation. Proceedings of the National Academy of Sciences, 98, 8554-8559. https://doi.org/10.1073/pnas.141230798
|
[106]
|
Yang, J., Li, Y., Aguilar, A., Liu, Z., Yang, C. and Wang, S. (2019) Simple Structural Modifications Converting a Bona Fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. Journal of Medicinal Chemistry, 62, 9471-9487. https://doi.org/10.1021/acs.jmedchem.9b00846
|
[107]
|
Chu, T., Gao, N., Li, Q., Chen, P., Yang, X., Chen, Y., et al. (2016) Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation. Cell Chemical Biology, 23, 453-461. https://doi.org/10.1016/j.chembiol.2016.02.016
|
[108]
|
Lu, M., Liu, T., Jiao, Q., Ji, J., Tao, M., Liu, Y., et al. (2018) Discovery of a Keap1-Dependent Peptide PROTAC to Knockdown Tau by Ubiquitination-Proteasome Degradation Pathway. European Journal of Medicinal Chemistry, 146, 251-259. https://doi.org/10.1016/j.ejmech.2018.01.063
|
[109]
|
Silva, M.C., Ferguson, F.M. and Cai, Q. (2019) Targeted Degradation of Aberrant Tau in Frontotemporal Dementia Patient-Derived Neuronal Cell Models. eLife, 8, e45457.
|
[110]
|
Wang, W., Zhou, Q., Jiang, T., Li, S., Ye, J., Zheng, J., et al. (2021) A Novel Small-Molecule PROTAC Selectively Promotes Tau Clearance to Improve Cognitive Functions in Alzheimer-Like Models. Theranostics, 11, 5279-5295. https://doi.org/10.7150/thno.55680
|
[111]
|
Liang, M., Gu, L., Zhang, H., Min, J., Wang, Z., Ma, Z., et al. (2022) Design, Synthesis, and Bioactivity of Novel Bifunctional Small Molecules for Alzheimer’s Disease. ACS Omega, 7, 26308-26315. https://doi.org/10.1021/acsomega.2c02130
|
[112]
|
Kargbo, R.B. (2020) PROTAC Compounds Targeting Α-Synuclein Protein for Treating Neurogenerative Disorders: Alzheimer’s and Parkinson’s Diseases. ACS Medicinal Chemistry Letters, 11, 1086-1087. https://doi.org/10.1021/acsmedchemlett.0c00192
|
[113]
|
Punyakoti, P., Behl, T., Sehgal, A., Yadav, S., Sachdeva, M., Anwer, M.K., et al. (2023) Postulating the Possible Cellular Signalling Mechanisms of Antibody Drug Conjugates in Alzheimer’s Disease. Cellular Signalling, 102, Article ID: 110539. https://doi.org/10.1016/j.cellsig.2022.110539
|
[114]
|
Catania, M., Colombo, L., Sorrentino, S., Cagnotto, A., Lucchetti, J., Barbagallo, M.C., et al. (2022) A Novel Bio-Inspired Strategy to Prevent Amyloidogenesis and Synaptic Damage in Alzheimer’s Disease. Molecular Psychiatry, 27, 5227-5234. https://doi.org/10.1038/s41380-022-01745-x
|
[115]
|
Fettelschoss, A., Zabel, F. and Bachmann, M.F. (2014) Vaccination against Alzheimer Disease: An Update on Future Strategies. Human Vaccines & Immunotherapeutics, 10, 847-851. https://doi.org/10.4161/hv.28183
|
[116]
|
Röskam, S., Neff, F., Schwarting, R., Bacher, M. and Dodel, R. (2010) APP Transgenic Mice: The Effect of Active and Passive Immunotherapy in Cognitive Tasks. Neuroscience & Biobehavioral Reviews, 34, 487-499. https://doi.org/10.1016/j.neubiorev.2009.10.006
|
[117]
|
Cacabelos, R. (2019) How Plausible Is an Alzheimer’s Disease Vaccine? Expert Opinion on Drug Discovery, 15, 1-6. https://doi.org/10.1080/17460441.2019.1667329
|
[118]
|
Petrushina, I., Hovakimyan, A., Harahap-Carrillo, I.S., Davtyan, H., Antonyan, T., Chailyan, G., et al. (2020) Characterization and Preclinical Evaluation of the cGMP Grade DNA Based Vaccine, AV-1959D to Enter the First-in-Human Clinical Trials. Neurobiology of Disease, 139, Article ID: 104823. https://doi.org/10.1016/j.nbd.2020.104823
|
[119]
|
Liu, D., Lu, S., Zhang, L., Huang, Y., Ji, M., Sun, X., et al. (2020) Yeast-Based Aβ1-15 Vaccine Elicits Strong Immunogenicity and Attenuates Neuropathology and Cognitive Deficits in Alzheimer’s Disease Transgenic Mice. Vaccines, 8, Article No. 351. https://doi.org/10.3390/vaccines8030351
|
[120]
|
Brigham and Women’s Hospital (2021) Brigham and Women’s Hospital Launches Clinical Trial of Nasal Vaccine for Alzheimer’s Disease. Brigham and Women’s Hospital.
|
[121]
|
Cao, W., Kim, J.H., Reber, A.J., Hoelscher, M., Belser, J.A., Lu, X., et al. (2017) Nasal Delivery of Protollin-Adjuvanted H5N1 Vaccine Induces Enhanced Systemic as Well as Mucosal Immunity in Mice. Vaccine, 35, 3318-3325. https://doi.org/10.1016/j.vaccine.2017.05.004
|
[122]
|
Saresella, M., Calabrese, E., Marventano, I., Piancone, F., Gatti, A., Farina, E., et al. (2012) A Potential Role for the PD1/PD-L1 Pathway in the Neuroinflammation of Alzheimer’s Disease. Neurobiology of Aging, 33, 624.e11-624.e22. https://doi.org/10.1016/j.neurobiolaging.2011.03.004
|
[123]
|
Xing, Z., Zuo, Z., Hu, D., Zheng, X., Wang, X., Yuan, L., et al. (2021) Influenza Vaccine Combined with Moderate-Dose PD1 Blockade Reduces Amyloid-β Accumulation and Improves Cognition in APP/PS1 Mice. Brain, Behavior, and Immunity, 91, 128-141. https://doi.org/10.1016/j.bbi.2020.09.015
|
[124]
|
Gilman, S., Koller, M., Black, R.S., Jenkins, L., Griffith, S.G., Fox, N.C., et al. (2005) Clinical Effects of Aβ Immunization (AN1792) in Patients with AD in an Interrupted Trial. Neurology, 64, 1553-1562. https://doi.org/10.1212/01.wnl.0000159740.16984.3c
|
[125]
|
Masliah, E., Hansen, L., Adame, A., Crews, L., Bard, F., Lee, C., et al. (2005) Aβ Vaccination Effects on Plaque Pathology in the Absence of Encephalitis in Alzheimer Disease. Neurology, 64, 129-131. https://doi.org/10.1212/01.wnl.0000148590.39911.df
|
[126]
|
Wiessner, C., Wiederhold, K.-., Tissot, A.C., Frey, P., Danner, S., Jacobson, L.H., et al. (2011) The Second-Generation Active aβ Immunotherapy CAD106 Reduces Amyloid Accumulation in APP Transgenic Mice While Minimizing Potential Side Effects. Journal of Neuroscience, 31, 9323-9331. https://doi.org/10.1523/jneurosci.0293-11.2011
|
[127]
|
Graf, A., Andreasen, N., Riviere, M.E., Ros, J., Moreau, J., Sevigny, J., et al. (2010) P3‐275: Optimization of the Treatment Regimen with Active Aβ Immunotherapy CAD106 in Alzheimer Patients. Alzheimer’s & Dementia, 6, S532. https://doi.org/10.1016/j.jalz.2010.05.1775
|
[128]
|
Winblad, B. (2008) S2‐04-06: Safety, Tolerability and Immunogenicity of the Aβ Immunotherapeutic Vaccine CAD106 in a First‐in‐Man Study in Alzheimer Patients. Alzheimer’s & Dementia, 4, T128. https://doi.org/10.1016/j.jalz.2008.05.295
|
[129]
|
Winblad, B.G., Minthon, L., Floesser, A., Imbert, G., Dumortier, T., He, Y., et al. (2009) O2‐05‐05: Results of the First‐in‐Man Study with the Active Aβ Immunotherapy CAD106 in Alzheimer Patients. Alzheimer’s & Dementia, 5, P113-P114. https://doi.org/10.1016/j.jalz.2009.05.356
|
[130]
|
Davtyan, H., Hovakimyan, A., Kiani Shabestari, S., Antonyan, T., Coburn, M.A., Zagorski, K., et al. (2019) Testing a MultiTEP-Based Combination Vaccine to Reduce Aβ and Tau Pathology in Tau22/5xfad Bigenic Mice. Alzheimer’s Research & Therapy, 11, Article No. 107. https://doi.org/10.1186/s13195-019-0556-2
|
[131]
|
Serrano-Pozo, A., Frosch, M.P., Masliah, E. and Hyman, B.T. (2011) Neuropathological Alterations in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 1, a006189. https://doi.org/10.1101/cshperspect.a006189
|
[132]
|
Bloom, G.S. (2014) Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurology, 71, 505-508. https://doi.org/10.1001/jamaneurol.2013.5847
|
[133]
|
Uddin, M.S., Kabir, M.T., Tewari, D., Mamun, A.A., Mathew, B., Aleya, L., et al. (2020) Revisiting the Role of Brain and Peripheral Aβ in the Pathogenesis of Alzheimer’s Disease. Journal of the Neurological Sciences, 416, Article ID: 116974. https://doi.org/10.1016/j.jns.2020.116974
|
[134]
|
Beshir, S.A., Aadithsoorya, A.M., Parveen, A., Goh, S.S.L., Hussain, N. and Menon, V.B. (2022) Aducanumab Therapy to Treat Alzheimer’s Disease: A Narrative Review. International Journal of Alzheimer’s Disease, 2022, Article ID: 9343514. https://doi.org/10.1155/2022/9343514
|
[135]
|
Yiannopoulou, K.G., Anastasiou, A.I., Zachariou, V. and Pelidou, S. (2019) Reasons for Failed Trials of Disease-Modifying Treatments for Alzheimer Disease and Their Contribution in Recent Research. Biomedicines, 7, Article No. 97. https://doi.org/10.3390/biomedicines7040097
|
[136]
|
Shi, Y., Zhang, H., Song, Q., Yu, G., Liu, Z., Zhong, F., et al. (2022) Development of Novel 2-Aminoalkyl-6-(2-Hydroxyphenyl)pyridazin-3(2h)-One Derivatives as Balanced Multifunctional Agents against Alzheimer’s Disease. European Journal of Medicinal Chemistry, 230, Article ID: 114098. https://doi.org/10.1016/j.ejmech.2021.114098
|