Share This Article:

Synthesis of Nanostructured TiO2 Photocatalyst with Ultrasonication at Low Temperature

Abstract Full-Text HTML XML Download Download as PDF (Size:1526KB) PP. 29-36
DOI: 10.4236/msce.2015.31005    3,884 Downloads   4,600 Views   Citations

ABSTRACT

A thin film TiO2 in hierarchical nano-structure with high photocatalytic activities was synthesized in simple steps with ultrasonication. The crystal structure and morphology of the photocatalyst were investigated by X-ray diffraction (XRD) and high-resolution field emission scanning electron microscope (FE-SEM). In the present work, nanostructured TiO2 was directly formed onto a Ti substrate via a solution approach. This nanostructured TiO2 photocatalyst can be reused and will not generate secondary contamination to treated water. The photocatalytic activity of the synthesized TiO2 photocatalyst was evaluated by the degradation of phenol under UVC irradiation in water and was compared with the general sol-gel derived TiO2 films as well as a commercial DP-25 TiO2 coating. It was found that the synthesized nanostructured TiO2has significantly high and stable photocatalytic activity.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Tao, Y. , Han, Z. , Cheng, Z. , Liu, Q. , Wei, F. , Ting, K. and Yin, X. (2015) Synthesis of Nanostructured TiO2 Photocatalyst with Ultrasonication at Low Temperature. Journal of Materials Science and Chemical Engineering, 3, 29-36. doi: 10.4236/msce.2015.31005.

References

[1] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271. http://dx.doi.org/10.1126/science.1061051
[2] Khan, S.U., Al-Shahry, M. and Ingler, W.B. (2002) Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 297, 2243-2245. http://dx.doi.org/10.1126/science.1075035
[3] Kraeutler, B. and Bard, A.J. (1977) Photoelectrosynthesis of Ethane from Acetate Ion at an n-Type Titanium Dioxide Electrode. The Photo-Kolbe Reaction. Journal of the American Chemical Society, 99, 7729-7731. http://dx.doi.org/10.1021/ja00465a065
[4] Yamamoto, J., Tan, A., Shiratsuchi, R., Hayase, S., Chenthamarakshan, C.R. and Rajeshwar, K. (2003) A 4% Efficient Dye-Sensitized Solar Cell Fabricated from Cathodically Electrosynthesized Composite Titania Films. Advanced Materials, 15, 1823-1825. http://dx.doi.org/10.1002/adma.200305239
[5] Radecka, M. and Rekas, M. (2002) Effect of High-Temperature Treatment on n-p Transition in Titania. Journal of the American Ceramic Society, 85, 346-354. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00095.x
[6] Wijnhoven, J.E. and Vos, W.L. (1998) Preparation of Photonic Crystals Made of Air Spheres in Titania. Science, 281, 802-804. http://dx.doi.org/10.1126/science.281.5378.802
[7] Wu, J.-M., Hayakawa, S., Tsuru, K. and Osaka, A. (2002) In Vitro Bioactivity of Anatase Film Obtained by Direct Deposition from Aqueous Titanium Tetrafluoride Solutions. Thin Solid Films, 414, 275-280. http://dx.doi.org/10.1016/S0040-6090(02)00498-4
[8] Tang, C., Fan, S., Lamy de la Chapelle, M., Dang, H. and Li, P. (2000) Synthesis of Gallium Phosphide Nanorods. Advanced Materials, 12, 1346-1348. http://dx.doi.org/10.1002/1521-4095(200009)12:18<1346::AID-ADMA1346>3.0.CO;2-8
[9] Zhang, D.F., Sun, L.D., Yin, J.L. and Yan, C.H. (2003) Low-Temperature Fabrication of Highly Crystalline SnO2 Nanorods. Advanced Mate-rials, 15, 1022-1025. http://dx.doi.org/10.1002/adma.200304899
[10] Sugimoto, T., Zhou, X. and Muramatsu, A. (2003) Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel–Sol Method: 4. Shape Control. Journal of Colloid and Interface Science, 259, 53-61. http://dx.doi.org/10.1016/S0021-9797(03)00035-3
[11] Yang, K., Zhu, J., Zhu, J., Huang, S., Zhu, X. and Ma, G. (2003) Sonochemical Synthesis and Microstructure Investigation of Rod-Like Nanocrystalline Rutile Titania. Materials Letters, 57, 4639-4642. http://dx.doi.org/10.1016/S0167-577X(03)00376-8
[12] Pradhan, S.K., Reucroft, P.J., Yang, F. and Dozier, A. (2003) Growth of TiO2 Nanorods by Metalorganic Chemical Vapor Deposition. Journal of Crystal Growth, 256, 83-88. http://dx.doi.org/10.1016/S0022-0248(03)01339-3
[13] Ayers, M. and Hunt, A. (1998) Titanium Oxide Aerogels Prepared from Titanium Metal and Hydrogen Peroxide. Materials Letters, 34, 290-293. http://dx.doi.org/10.1016/S0167-577X(97)00181-X
[14] Song, K.C. and Pratsinis, S.E. (2000) The Effect of Alcohol Solvents on the Porosity and Phase Composition of Titania. Journal of Colloid and Interface Science, 231, 289-298. http://dx.doi.org/10.1006/jcis.2000.7147
[15] Hu, Y., Tsai, H.-L. and Huang, C.-L. (2003) Effect of Brookite Phase on the Anatase-Rutile Transition in Titania Nanoparticles. Journal of the European Ceramic Society, 23, 691-696. http://dx.doi.org/10.1016/S0955-2219(02)00194-2
[16] Ovenstone, J. and Chan, K.C. (2001) Effect of Halide Conta-minant Ions in the Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination. European Journal of Inorganic Chemistry, 5, 1339-1342. http://dx.doi.org/10.1002/1099-0682(200105)2001:5<1339::AID-EJIC1339>3.0.CO;2-H
[17] Shimizu, K., Imai, H., Hirashima, H. and Tsukuma, K. (1999) Low-Temperature Synthesis of Anatase Thin Films on Glass and Organic Sub-strates by Direct Deposition from Aqueous Solutions. Thin Solid Films, 351, 220-224. http://dx.doi.org/10.1016/S0040-6090(99)00084-X
[18] Yamabi, S. and Imai, H. (2002) Growth Conditions for Wurt-zite Zinc Oxide Films in Aqueous Solutions. Journal of Materials Chemistry, 12, 3773-3778. http://dx.doi.org/10.1039/b205384e
[19] Kolen’ko, Y.V. and Burukhin, A.A., Churagulov, B.R. and Oleynikov, N.N. (2003) Synthesis of Nanocrystalline TiO2 Powders from Aqueous TiOSO4 Solutions under Hydrothermal Conditions. Materials Letters, 57, 1124-1129. http://dx.doi.org/10.1016/S0167-577X(02)00943-6
[20] Tengvall, P., Elwing, H. and Lundstr?m, I. (1989) Titanium Gel Made from Metallic Titanium and Hydrogen Peroxide. Journal of Colloid and Interface Science, 130, 405-413. http://dx.doi.org/10.1016/0021-9797(89)90117-3
[21] Wang, X.X., Hayakawa, S., Tsuru, K. and Osaka, A. (2000) Improvement of Bioactivity of H2O2/TaCl5-Treated Titanium after Subsequent Heat Treatments. Journal of Biomedical Materials Research, 52, 171-176. http://dx.doi.org/10.1002/1097-4636(200010)52:1<171::AID-JBM22>3.0.CO;2-O
[22] Wu, J.-M., Zhang, T.-W., Zeng, Y.-W., Hayakawa, S., Tsuru, K. and Osaka, A. (2005) Large-Scale Preparation of Ordered Titania Nanorods with Enhanced Photocatalytic Activity. Langmuir, 21, 6995-7002. http://dx.doi.org/10.1021/la0500272
[23] Porkodi, K. and Arokiamary, S. (2007) Synthesis and Spectroscopic Cha-racterization of Nanostructured Anatase Titania: A Photocatalyst. Materials Characterization, 58, 495-503. http://dx.doi.org/10.1016/j.matchar.2006.04.019
[24] Ba-Abbad, M.M., Kadhum, A., Al-Amiery, A.A., Mohamad, A. and Takriff, M.S. (2012) Toxicity Evaluation for Low Concentration of Chlorophenols under Solar Radiation Using Zinc Oxide (ZnO) Nanoparticles. International Journal of Physical Sciences, 7, 48-52.
[25] Dolat, D., Quici, N., Ku-siak-Nejman, E., Morawski, A. and Li Puma, G. (2012) One-Step, Hydrothermal Synthesis of Nitrogen, Carbon Co-Doped Titanium Dioxide (N, CTiO2) Photocatalysts. Effect of Alcohol Degree and Chain Length as Carbon Dopant Precursors on Photocatalytic Activity and Catalyst Deactivation. Applied Catalysis B: Environmental, 115, 81-89. http://dx.doi.org/10.1016/j.apcatb.2011.12.007
[26] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271. http://dx.doi.org/10.1126/science.1061051
[27] Khan, S.U., Al-Shahry, M. and Ingler, W.B. (2002) Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 297, 2243-2245. http://dx.doi.org/10.1126/science.1075035
[28] Kraeutler, B. and Bard, A.J. (1977) Photoelectrosynthesis of Ethane from Acetate Ion at an n-Type Titanium Dioxide Electrode. The Photo-Kolbe Reaction. Journal of the American Chemical Society, 99, 7729-7731. http://dx.doi.org/10.1021/ja00465a065
[29] Yamamoto, J., Tan, A., Shiratsuchi, R., Hayase, S., Chenthamarakshan, C.R. and Rajeshwar, K. (2003) A 4% Efficient Dye-Sensitized Solar Cell Fabricated from Cathodically Electrosynthesized Composite Titania Films. Advanced Materials, 15, 1823-1825. http://dx.doi.org/10.1002/adma.200305239
[30] Radecka, M. and Rekas, M. (2002) Effect of High-Temperature Treatment on n-p Transition in Titania. Journal of the American Ceramic Society, 85, 346-354. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00095.x
[31] Wijnhoven, J.E. and Vos, W.L. (1998) Preparation of Photonic Crystals Made of Air Spheres in Titania. Science, 281, 802-804. http://dx.doi.org/10.1126/science.281.5378.802
[32] Wu, J.-M., Hayakawa, S., Tsuru, K. and Osaka, A. (2002) In Vitro Bioactivity of Anatase Film Obtained by Direct Deposition from Aqueous Titanium Tetrafluoride Solutions. Thin Solid Films, 414, 275-280. http://dx.doi.org/10.1016/S0040-6090(02)00498-4
[33] Tang, C., Fan, S., Lamy de la Chapelle, M., Dang, H. and Li, P. (2000) Synthesis of Gallium Phosphide Nanorods. Advanced Materials, 12, 1346-1348. http://dx.doi.org/10.1002/1521-4095(200009)12:18<1346::AID-ADMA1346>3.0.CO;2-8
[34] Zhang, D.F., Sun, L.D., Yin, J.L. and Yan, C.H. (2003) Low-Temperature Fabrication of Highly Crystalline SnO2 Nanorods. Advanced Mate-rials, 15, 1022-1025. http://dx.doi.org/10.1002/adma.200304899
[35] Sugimoto, T., Zhou, X. and Muramatsu, A. (2003) Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel–Sol Method: 4. Shape Control. Journal of Colloid and Interface Science, 259, 53-61. http://dx.doi.org/10.1016/S0021-9797(03)00035-3
[36] Yang, K., Zhu, J., Zhu, J., Huang, S., Zhu, X. and Ma, G. (2003) Sonochemical Synthesis and Microstructure Investigation of Rod-Like Nanocrystalline Rutile Titania. Materials Letters, 57, 4639-4642. http://dx.doi.org/10.1016/S0167-577X(03)00376-8
[37] Pradhan, S.K., Reucroft, P.J., Yang, F. and Dozier, A. (2003) Growth of TiO2 Nanorods by Metalorganic Chemical Vapor Deposition. Journal of Crystal Growth, 256, 83-88. http://dx.doi.org/10.1016/S0022-0248(03)01339-3
[38] Ayers, M. and Hunt, A. (1998) Titanium Oxide Aerogels Prepared from Titanium Metal and Hydrogen Peroxide. Materials Letters, 34, 290-293. http://dx.doi.org/10.1016/S0167-577X(97)00181-X
[39] Song, K.C. and Pratsinis, S.E. (2000) The Effect of Alcohol Solvents on the Porosity and Phase Composition of Titania. Journal of Colloid and Interface Science, 231, 289-298. http://dx.doi.org/10.1006/jcis.2000.7147
[40] Hu, Y., Tsai, H.-L. and Huang, C.-L. (2003) Effect of Brookite Phase on the Anatase-Rutile Transition in Titania Nanoparticles. Journal of the European Ceramic Society, 23, 691-696. http://dx.doi.org/10.1016/S0955-2219(02)00194-2
[41] Ovenstone, J. and Chan, K.C. (2001) Effect of Halide Conta-minant Ions in the Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination. European Journal of Inorganic Chemistry, 5, 1339-1342. http://dx.doi.org/10.1002/1099-0682(200105)2001:5<1339::AID-EJIC1339>3.0.CO;2-H
[42] Shimizu, K., Imai, H., Hirashima, H. and Tsukuma, K. (1999) Low-Temperature Synthesis of Anatase Thin Films on Glass and Organic Sub-strates by Direct Deposition from Aqueous Solutions. Thin Solid Films, 351, 220-224. http://dx.doi.org/10.1016/S0040-6090(99)00084-X
[43] Yamabi, S. and Imai, H. (2002) Growth Conditions for Wurt-zite Zinc Oxide Films in Aqueous Solutions. Journal of Materials Chemistry, 12, 3773-3778. http://dx.doi.org/10.1039/b205384e
[44] Kolen’ko, Y.V. and Burukhin, A.A., Churagulov, B.R. and Oleynikov, N.N. (2003) Synthesis of Nanocrystalline TiO2 Powders from Aqueous TiOSO4 Solutions under Hydrothermal Conditions. Materials Letters, 57, 1124-1129. http://dx.doi.org/10.1016/S0167-577X(02)00943-6
[45] Tengvall, P., Elwing, H. and Lundstr?m, I. (1989) Titanium Gel Made from Metallic Titanium and Hydrogen Peroxide. Journal of Colloid and Interface Science, 130, 405-413. http://dx.doi.org/10.1016/0021-9797(89)90117-3
[46] Wang, X.X., Hayakawa, S., Tsuru, K. and Osaka, A. (2000) Improvement of Bioactivity of H2O2/TaCl5-Treated Titanium after Subsequent Heat Treatments. Journal of Biomedical Materials Research, 52, 171-176. http://dx.doi.org/10.1002/1097-4636(200010)52:1<171::AID-JBM22>3.0.CO;2-O
[47] Wu, J.-M., Zhang, T.-W., Zeng, Y.-W., Hayakawa, S., Tsuru, K. and Osaka, A. (2005) Large-Scale Preparation of Ordered Titania Nanorods with Enhanced Photocatalytic Activity. Langmuir, 21, 6995-7002. http://dx.doi.org/10.1021/la0500272
[48] Porkodi, K. and Arokiamary, S. (2007) Synthesis and Spectroscopic Cha-racterization of Nanostructured Anatase Titania: A Photocatalyst. Materials Characterization, 58, 495-503. http://dx.doi.org/10.1016/j.matchar.2006.04.019
[49] Ba-Abbad, M.M., Kadhum, A., Al-Amiery, A.A., Mohamad, A. and Takriff, M.S. (2012) Toxicity Evaluation for Low Concentration of Chlorophenols under Solar Radiation Using Zinc Oxide (ZnO) Nanoparticles. International Journal of Physical Sciences, 7, 48-52.
[50] Dolat, D., Quici, N., Ku-siak-Nejman, E., Morawski, A. and Li Puma, G. (2012) One-Step, Hydrothermal Synthesis of Nitrogen, Carbon Co-Doped Titanium Dioxide (N, CTiO2) Photocatalysts. Effect of Alcohol Degree and Chain Length as Carbon Dopant Precursors on Photocatalytic Activity and Catalyst Deactivation. Applied Catalysis B: Environmental, 115, 81-89. http://dx.doi.org/10.1016/j.apcatb.2011.12.007

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.