Interaction of bovine serum albumi with two alkylimidazolium-based ionic liquids investigated by microcalorimetry and circular dichroism

Abstract

The interactions of bovine serum albumin (BSA) with two alkylimidazolium-based ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6), in buffer solutions at pH 7.0 were investigated by isothermal titration calorimetry (ITC) and circular dichroism (CD). CD spectra showed that the two ionic liquids changed the secondary structure of BSA. Data process was based on the supposition that there were several independent types of binding sites on each BSA molecule for the two ligand molecules. The results obtained by using this supposition combined with Langmuir adsorption model showed that there were two types of such binding sites. One was the high affinity binding site, and the other was the low affinity binding site. The binding constants, changes in enthalpy, entropy and Gibbs free energy for the two types of binding were obtained, which showed that the two types of binding were driven by a favorable entropy increase. Furthermore, for either the ionic liquids, the number of the high affinity binding sites is much smaller than that of the low affinity ones. These results were interpreted with the molecular structure of BSA and the different substituent groups on imidazole ring of the two ionic liquid molecules.

Share and Cite:

Zhu, L. , Li, G. and Zheng, F. (2011) Interaction of bovine serum albumi with two alkylimidazolium-based ionic liquids investigated by microcalorimetry and circular dichroism. Journal of Biophysical Chemistry, 2, 147-152. doi: 10.4236/jbpc.2011.22018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kelley, D. and McClements, D.J. (2003) Interactions of bovine serum albumin with ionic surfactants in aqueous solutions. Food Hydrocolloids, 17, 73-85. doi:10.1016/S0268-005X(02)00040-1
[2] Ruiz-Pe?a, M., Oropesa-Nu?ez, R., Pons, T., Louro, S.R.W. and Pérez-Gramatgesa, A. (2010) Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 75, 282-289. doi:10.1016/j.colsurfb.2009.08.046
[3] Valstar, A., Almgren, M. and Brown, W. (2000) The interaction of bovine serum albumin with surfactants studied by light scattering. Langmuir, 16, 922-927. doi:10.1021/la990423i
[4] Liu, M., Sun, D. Z., Li, N. and Zhu, L.Y. (2009) Studies on the binding of bis-quaternary ammonium surfactants to bovine serum albumins by microcalorimetry and circular dichroism. Journal of Dispersion Science and Technology, 30, 459-465. doi:10.1080/01932690802548635
[5] Gelamo, E.L., Itri, R., Alonso, A., Silva, J.V. and Tabak, M. (2004) Small-angle X-ray scattering and electron paramagnetic resonance study of the interaction of bovine serum albumin with ionic surfactants. Journal of Colloid and Interface Science, 277, 471-482. doi:10.1016/j.jcis.2004.04.065
[6] Geng, F., Zheng, L.Q., Yu, L., Li, G.Z. and Tung, C.H. (2010) Interaction of bovine serum albumin and long-chain imidazolium ionic liquid measured by fluorescence spectra and surface tension. Process biochemistry, 45, 306-311. doi:10.1016/j.procbio.2009.10.001
[7] Trynda-Lemiesz, L. (2004) Paclitaxel-HSA interaction. Binding sites on HSA molecule. Bioorganic & Medicinal Chemistry, 12, 3269-3275. doi:10.1016/j.bmc.2004.03.073
[8] Barbosa, S., Taboada, P., Attwood, D. and Mosquera, V. (2003) Thermodynamic properties of the complex formed by interaction of two anionic amphiphilic penicillins with human serum albumin. Langmuir, 19, 10200-10204. doi:10.1021/la035106x
[9] Hu, Y.J., Liu, Y., Pi, Z.B. and Qu, S.S. (2005) Interaction of cromolyn sodium with human serum albumin: A fluorescence quenching study. Bioorganic & Medicinal Chemistry, 13, 6609-6616. doi:10.1016/j.bmc.2005.07.039
[10] Li, R.X. (2004) Green solvent: Synthesis and application of ionic liquids. Chemistry Technology Press, Beijing.
[11] Robin, D.R. and Kenneth, R.S. (2003) Ionic liquids—solvents of the future. Science, 302, 792-793.
[12] McEwen, A.B., Ngo, H.L., Lecompte, K. and Goldman, J.L. (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. Journal of the Electrochemical Society, 146, 1687-1695. doi:10.1149/1.1391827
[13] Welton, T. (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Review, 99, 2071-2084. doi:10.1021/jp020631a
[14] Anthony, J.L., Maginn, E.J. and Brennecke, J.F. (2002) Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. The Journal of Physical Chemistry B, 106, 7315-7320. doi:10.1021/jp020631a
[15] He, Y.F. and Shen, X.H. (2008) Interaction between ?-cyclodextrin and ionic liquids in aqueous solutions investigated by a competitive method using a substituted 3H-indole probe. Journal of Photochemistry and Photobiology A: Chemistry, 197, 253-259. doi:10.1016/j.jphotochem.2008.01.001
[16] Archer, D. G., Widegren, J. A., Kirklin, D. R. and Magee, J. W. (2005) Enthalpy of solution of 1-octyl-3-methylimidazolium tetrafluoroborate in water and in aqueous sodium fluoride. Journal of Chemical & Engineering Data, 50, 1484-1491. doi:10.1021/je050136i
[17] Chen, Y.H., Meng, Y.S., Zhang, S.M., Zhang, Y., Liu, X.W. and Yang, J. (2010) Liquid-liquid equilibria of aqueous biphasic systems composed of 1-bButyl- 3-methyl imidazolium tetrafluoroborate + sucrose/mal- tose + water. Journal of Chemical & Engineering Data, 55, 3612-3616. doi:10.1021/je100212p
[18] Moriyama, Y. and Takeda, K. (2005) Protective effects of small amounts of bis (2-ethylhexyl) sulfosuccinate on the helical structures of human and bovine serum albumins in their thermal denaturations. Langmuir, 21, 5524-5528. doi:10.1021/la050252j
[19] Bai, G., Wang, Y. and Yan, H. (2002) Thermodynamics of interaction between cationic gemini surfactants and hydrophobically modified polymers in aqueous solutions. The Journal of Physical Chemistry B, 106, 2153-2159. doi:10.1021/jp0123839
[20] Roy, A. S., Tripathy, D. R., Chatterjee, A., Dasgupta, S. (2010) A spectroscopic study of the interaction of the antioxidant naringin with bovine serum albumin. Journal of Biophysical Chemistry, 1, 141-152. doi:10.4236/jbpc.2010.13017
[21] Nielsen, A. D., Borch, K. and Westh, P. (2000) Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin. Biochimica et Biophysica Acta, 1479, 321-331. doi:10.1016/S0167-4838(00)00012-1
[22] Aberkane, L., Jasniewski, J., Gaiani, C., Scher, J. and Sanchez, C. (2010) Thermodynamic characterization of acacia gum-β-lactoglobulin complex coacervation. Langmuir, 26, 12523-12533. doi:10.1021/la100705d
[23] Liu, M., Zhu, L.Y., Qu, X.K., Sun, D.Z. and Li, L.W. (2007) Studies on the binding of paeonol and two of its isomers to human serum albumin by using microcalorimetry and circular dichroism. The Journal of Chemical Thermodynamics, 39, 1565-1570. doi:10.1016/j.jct.2007.05.003
[24] Sulkowska, A. (2002) Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure, 614, 227-232. doi:10.1016/S0022-2860(02)00256-9
[25] Gelamo, E.L. Tabak, M. (2000) Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56, 2255-2271. doi:10.1016/S1386-1425(00)00313-9
[26] De, S., Ginishwar, A. and Das, S. (2005) Fluorescence probing of albumin-surfactant interaction. Journal of Colloid and Interface Science, 285, 562-573. doi:10.1016/j.jcis.2004.12.022
[27] Liu, R.T., Yang, J.H., Sun, C.X., Wu, X., Li, L. and Li Z. (2003) Resonance light-scattering method for the determination of BSA and HSA with sodium dodecyl benzene sulfonate or sodium lauryl sulfate. Analytical and Bioanalytical Chemistry, 377, 375-379. doi:10.1007/s00216-003-2091-y
[28] Dong, B., Zhao, X. Y., Zheng, L. Q., Zhang, J., Li, N. and Inoue, T. (2008) Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 666-672. doi:10.1016/j.colsurfa.2007.12.001
[29] Deng, X. (2008) Study on ionic liquids used as solvent for fluorescence analysis. MA dissertation, Southwest University.
[30] Sun, D.Z., Li, L., Qiu, X.M., Liu, F. and Yin, B.L. (2006) Isothermal titration calorimetry and 1H NMR studies on host–guest interaction of paeonol and two of its isomers with ?-cyclodextrinInt. International Journal of Pharmaceutics, 316, 7-13. doi:10.1016/j.ijpharm.2006.02.020

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.