Rapid Separation and Quantification of Iron in Uranium Nuclear Matrix by Capillary Zone Electrophoresis (CZE)

Abstract

A method was developed for rapid separation and determination of iron by employing capillary zone elec-trophoresis (CZE) technique with direct UV detection. Iron could be separated from matrix uranium by di-rect injection of dissolved sample solution into capillary using a mixture of 10 mM HCl and 65 mM KCl (pH = 2) as background electrolyte (BGE) at an applied voltage of 15 kV. The developed method has a very high tolerance for the matrix element U (100 mg/mL) and as such may not need prior separation of iron from the matrix. Iron could be separated with better than 95% recovery. The method showed a linear calibration over a concentration range 1-50 ppm of Fe. The migration times for the iron peak were reproducible within 1% for both pure Fe(III) and in presence of matrix uranium (80 mg/mL). The precision (RSD, n = 22) of peak area obtained for 1ppm of iron was 3.5%. The limit of detection (LOD) (3 ) was 0.1 ppm and the ab-solute LOD was 9 × 10-14 g considering the sample injection volume of 1.5 nL. The developed method has been validated by separating and determining iron in two certified reference materials of U3O8. The method was applied for the determination of iron in different uranium based nuclear materials. The CZE method is versatile for routine analysis as it is simple, rapid and has simple sample preparation procedure.

Share and Cite:

V. Mishra, M. Das, S. Jeyakumar, R. Sawant and K. Ramakumar, "Rapid Separation and Quantification of Iron in Uranium Nuclear Matrix by Capillary Zone Electrophoresis (CZE)," American Journal of Analytical Chemistry, Vol. 2 No. 1, 2011, pp. 46-55. doi: 10.4236/ajac.2011.21005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. V. Ramaniah, “Analytical Chemsitry of Fast Reactor Fuels - A Review,” Pure and Applied Chemistry, Vol. 54, No. 4, 1982, pp. 889-908. doi:10.1351/pac198254040889
[2] H. C. Bailly, D. Menessier and C. Prunier, “The Nuclear Fuel of Pressurized Water Reactors and Fast neutron Reactors: Design and Behavior,” Lavoisier Publishing Inc., Paris, 1999.
[3] K. S. Rao, T. Balaji, T. P. Rao, Y. Babu and G. R. K. Naidu, “Determination of Iron, Cobalt, Nickel, Manganese, Zinc, Copper, Cadmium and Lead in Human Hair Inductively Coupled Plasma-Atomic Emission Spectrometry,” Spectrochim Acta Part B, Vol. 57, No. 8, 2002, pp. 1333-1338. doi:10.1016/S0584-8547(02)00045-9
[4] M. Gopalakrishnan, K. Radhakrishnan, P. S. Dhami, V. T. Kulkarni, M. V. Joshi, A. B. Patwardhan, A. Ramanujam and J. N. Mathur, “Determination of Trace Impurities in Uranium, Thorium and Plutonium Matrices by Solvent Extraction and Inductively Coupled Atomic Emission Spectrometry,” Talanta, Vol. 44, 1997, pp. 169-176. doi:10.1016/S0039-9140(96)02027-9
[5] H. Vanhoe, C. Vandecasteele, J. Versieck and R. Dams, “Determination of Iron, Cobalt, Copper, Zinc, Rubidium, Molybdenum and Cesium in Human Serum by Inductively Coupled Mass Spectrometry,” Analytical Chemistry, Vol. 61, No. 17, 1989, pp. 1851-1857. doi:10.1021/ac00192a014
[6] Z. Marczenko and M. Balcerzak, “Separation, Preconcentration and Spectrophotometry in Inorganic Analysis,” Elsevier, 2000, pp. 226-237.
[7] A. Kelkar, A. Prakash, M. Afzal, J. P. Panakkal and H. S. Kamath, “Determination of Alkali, Alkaline Earth and Transition Metal Ions in UO2, ThO2 Powders and Sintered (Th,U)O2 Pellets by Ion Chroamtography,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 284, No. 2, 2010, pp. 443-449. doi:10.1007/s10967-010-0491-y
[8] V. V. Raut, M. K. Das, S. Jeyakumar and K. L. Ramakumar, “HPIC Separation and Quantification of Ca and Fe in Uranium Metal and Alloy Compounds,” Proceedings SESTEC-2008, Delhi, 12-14 March 2008.
[9] R. M. Cassidy and S. Elchuk, “Application of High Performance Liquid Chromatography to the Analysis of Nuclear Materials,” Journal of Liquid Chromatography & Related Technologies, Vol. 4, No. 3, 1981, pp. 379-398. doi:10.1080/01483918108059943
[10] S. Hjerten, “Free Zone Electrophoresis,” Chromatographic Reviews, Vol. 9, 1967, pp. 122-219. doi:10.1016/0009-5907(67)80003-6
[11] A. K. Malik, “Metal Analysis with Capillary Zone Electrophoresis,” Methods in Molecular Biology, Vol. 328, 2008, pp. 21-42. doi:10.1007/978-1-59745-376-9_2
[12] J. S. Fritz, “Recent Developments in the Separation of Inorganic and Small Organic Ions by Capillary Electrophoresis,” Journal of Chromatography A, Vol. 884, No. 1-2, 2000, pp. 261-275. doi:10.1016/S0021-9673(00)00186-2
[13] A. R. Timerbaev, “Capillary Electrophoresis of Inorganic Ions: An Update,” Electrophoresis, Vol. 25, 2004, pp. 4008-4031. doi:10.1002/elps.200406111
[14] A. R. Timerbaev, “Recent Trends in CE of Inorganic Ions: From Individual to Multiple Elemental Species Analysis,” Electrophoresis, Vol. 28, 2007, pp. 3420-3435. doi:10.1002/elps.200600491
[15] A. R. Timerbaev, “Inorganic Species Analysis by CE - An Overview for 2007-2008,” Electrophoresis, Vol. 31, 2010, pp. 192-204. doi:10.1002/elps.200900397
[16] F. Qu and J. Lina, “Separation of Transition Metals in Nonaqueous Media with Capillary Electrophoresis,” Journal of Chromatography A, Vol. 1068, 2005, pp. 169-174. doi:10.1016/j.chroma.2004.10.055
[17] F. Qu, J. Lin and Z. Chen, “Simultaneous Separation of Nine Metal Ions and Ammonium with Nonaqueous Capillary Electrophoresis,” Journal of Chromatography A, Vol. 1022, 2004, pp. 217-221. doi:10.1016/j.chroma.2003.09.039
[18] E. Naujalis and A. Padarauskas, “Development of Capillary Electrophoresis for the Determination of Metal Ions Using Mixed Partial and Complete Complexation Techniques,” Journal of Chromatography A, Vol. 977, 2002, pp. 135-142. doi:10.1016/S0021-9673(02)01350-X
[19] J. Gao, X. Sun, W. Yang, H. Fan, C. Li and X. Mao, “Separation and Determination of Six Metal Cations by Capillary Zone Electrophoresis,” Journal of the Chilean Chemical Society, Vol. 53, No. 1, 2008, pp. 1431-1434. doi:10.4067/S0717-97072008000100020
[20] B. H. Li and X. P. Yan, “Rapid Speciation of Iron by On-Line Coupling of Short Column Capillary Electrophoresis and Inductively Coupled Plasma Mass Spectrometry with the Collision Cell Technique,” Journal of Separation Science, Vol. 30, 2007, pp. 916-922. doi:10.1002/jssc.200600405
[21] J. E. Sonke and V. J. M. Salters, “Capillary Electrophoresis-High Resolution Sector Field Inductively Coupled Plasma Mass Spectrometry,” Journal of Chromatography A, Vol. 1159, 2007, pp. 63-74. doi:10.1016/j.chroma.2007.05.055
[22] R. Kautenburger and H. P. Beck, “Complexation Studies with Lanthanides and Humic Acid Analysed by Ultrafiltration and Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry,” Journal of Chromatography A, Vol. 59, 2007, pp. 75-80. doi:10.1016/j.chroma.2007.03.092
[23] E. X. Vrouwe, R. Luttge, W. Olthuis and A. van den Berg, “Rapid Inorganic Ion Analysis Using Quantitative Microchip Capillary Electrophoresis,” Journal of Chromatography A, Vol. 1102, 2006, pp. 287-293. doi:10.1016/j.chroma.2005.10.064
[24] G. L. Klunder, J. E. Andrews, P. M. Grant, B. D. Andresen and R. E. Russo, “Analysis of Fission Products Using Capillary Electrophoresis with On-Line Radioactivity Detection,” Analytical Chemistry, Vol. 69, 1997, pp. 2988-2993. doi:10.1021/ac970042e
[25] B. Kuczewski, C. M. Marquardt, A. Seibert, H. Geckeis, J. V. Kratz and N. Trautmann, “Separtion of Plutonium and Neptunium Species by Capillary Electrophoresis- Inductively Coupled Plasma-Mass Spectrometry and Application to Natural Groundwater Samples,” Analytical Chemistry, Vol. 75, 2003, pp. 6769-6774. doi:10.1021/ac0347213
[26] A. R. Timerbaev, “Metal Ions Analysis by Capillary Electrophoresis: New Possibilities in Separation and Detection,” Journal of Capillary Electrophoresis, Vol. 1, 1995, pp. 14-23.
[27] F. Foret, S. Fanali, A. Nardi and P. Bocek, “Capillary Zone Electrophoresis of Rare Earth Metals with Indirect UV Absorbance Detection,” Electrophoresis, Vol. 11, 1990, pp. 780-783. doi:10.1002/elps.1150110919
[28] Y. Shi and J. S. Fritz, “Separation of Metal Ions by Capillary Electrophoresis with A Complexing Electrolyte,” Journal of Chromatography A, Vol. 640, 1993, pp. 473-479. doi:10.1016/0021-9673(93)80217-V
[29] A. R. Timerbaev, O. P. Semenova and O. M. Petrukhin, “Migration Behaviour of Metal Complexes in Capillary Zone Electrophoresis: Interpretation in Terms of Quantitative Structure-Mobility Relationships,” Journal of Chromatography A, Vol. 943, 2002, pp. 263-274. doi:10.1016/S0021-9673(01)01462-5
[30] S. Pozdniakova, A. Padarauskas and G. Schwedt, “Simultaneous Determination of Iron(II) and Iron(III) in Water by Capillary Electrophoresis,” Analytica Chimica Acta, Vol. 351, 1997, pp. 41-48. doi:10.1016/S0003-2670(97)00331-0
[31] B. Y. Deng, C. J. Zeng and W. T. Chan, “Speciation of Iron Using Capillary Electrophoresis Inductively Coupled Plasma Atomic Emission Spectrometry,” Spectroscopy and Spectral Analysis, Vol. 25, 2005, pp. 1868-1871.
[32] P. Blatny, F. Kvasni?ka and E. Kenndler, “Trace Determination of Iron in Water at the μg/l Level by On-line Coupling of Capillary Zone Electrophoresis with UV Detection of the EDTA-Fe(III) Complex,” Journal of Chromatography A, Vol. 757, 1997, pp. 297-302. doi:10.1016/S0021-9673(96)00668-1
[33] B. Baraj, M. Martinez, A. Sastre and M. Aguilar, “Simultaneous Determination of Cr(III), Fe(III), Cu(II) and Pb(II) as UV-absorbing EDTA Complexes by Capillary Zone Electrophoresis,” Journal of Chromatography A, Vol. 695, 1995, pp. 103-111. doi:10.1016/0021-9673(94)01078-S
[34] G. Owens, V. K. Ferguson, M. J. Mclaughlin, I. Singleton, R. J. Reid and F. A. Smith, “Determination of NTA and EDTA and Speciation of Their Metal Complexes in Aqueous Solution by Capillary Electrophoresis,” Environmental Science & Technology, Vol. 34, 2000, pp. 885-891. doi:10.1021/es990309m
[35] S. Sch?ffer, P. Gared, C. Dezael and D. Richard, “Direct Determination of Iron(II), Iron (III) and Total Iron as UV-absorbing Complexes by Capillary Electrophoresis,” Journal of Chromatography A, Vol. 740, 1996, pp. 151-157. doi:10.1016/0021-9673(96)00121-5
[36] W. Buchberger and S. Mülleder, “Determination of Chelating Agents and Metal Chelates by Capillary Zone Electrophoresis,” Mikrochimica Acta, Vol. 119, 1995, pp. 103-111. doi:10.1007/BF01244859
[37] P. Kuban, P. Kuban and V. Kuban, “Simultaneous Capillary Electrophoretic Separation of Small Anions and Cations after Complexation with Ehylenediaminetetraacetic Acid,” Journal of Chromatography A, Vol. 836, 1999, pp. 75-80. doi:10.1016/S0021-9673(98)00980-7
[38] M. Xavier, P. R. Nair, K. V. Lohithakshan, S. G. Marathe and H. C. Jain, “Determiantion of Uranium in the Presence of Iron and Plutonium by Ti(III) Reduction and Biamperometric Titration,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 148, 1991, pp. 251-256. doi:10.1007/BF02060358
[39] I. Ali, V. K. Gupta and H. Y. Aboul-Enein, “Metal Ion Speciation and Capillary Electrophoresis: Application in the New Millennium,” Electrophoresis, Vol. 26, 2005, pp. 3988-4002. doi:10.1002/elps.200500216
[40] B. Baraj, A. Sastre, A. Merkoci and M. Martinez, “Determination of Chloride Complex of Au(III) by Capillary Zone Electrophoresis with Direct UV Detection,” Journal of Chromatography A, Vol. 718, 1995, pp. 227-232. doi:10.1016/0021-9673(95)00655-9
[41] B. Baraj, A. Sastre, M. Martinez and K. Spahiu, “Simultaneous Determination of Chloride Complexes of Pt(IV) and Pd(II) by Capillary Zone Electrophoresis with Direct UV Absorbance Detection,” Analytica Chimica Acta, Vol. 319, 1996, pp. 191-197. doi:10.1016/0003-2670(95)00472-6
[42] C. Hennig, K. Servaes, P. Nockemann, K. V. Hecke, L. V. Meervelt, J. Wouters, L. Fluyt, C. G?rller-Walrand and R. V. Deun, “Species Distribution and Coordination of Uranyl Chloro Complexes in Acetonitrile,” Inorganic Chemistry, Vol. 47, 2008, pp. 2987-2993. doi:10.1021/ic7014435
[43] C. Hennig, J. Tutschku, A. Rossberg, G. Bernhard and A. C. Scheinost, “Comparative EXAFS Investigation of Uranium(VI) and –(IV) Aquo Chloro Complexes in Solution Using a Newly Developed Spectroelectrochemical Cell,” Inorganic Chemistry, Vol. 44, 2005, pp. 6655-6661. doi:10.1021/ic048422n
[44] N. J. Welham, K. A. Malatt and S. Vukcevic, “The Effect of Solution Speciation on Iron-Sulphur-Arsenic-Chloride Systems at 298K,” Hydrometallurgy, Vol. 57, 2000, pp. 209-223. doi:10.1016/S0304-386X(00)00121-3
[45] W. Liu, B. Etschmann, J. Brugger, L. Spiccia, G. Foran and B. McInnes, “UV-Vis Spectrophotometric and XAFS Studies of Ferric Chloride Complexes in Hyper-Saline LiCl Solutions at 25-90?C,” Chemical Geology, Vol. 231, 2006, pp. 326-349. doi:10.1016/j.chemgeo.2006.02.005
[46] W. Walkowlak, D. Bhattacharyya and R. B. Grieves, “Selective Foam Fractionation of Chloride Complexes of Zinc(II), Cadmium(II), Mercury(II) and Gold(III),” Analytical Chemistry, Vol. 48, 1976, pp. 975-979. doi:10.1021/ac60371a036
[47] J. Bjerrum, “Determiantion of Small Stability Constants, A Spectrophotmetric Study of Copper(II) Chloride Complexes in Hydrochloric Acid,” Acta Chemica Scandinavica - Series A, Vol. 41, 1987, pp. 328-334. doi:10.3891/acta.chem.scand.41a-0328
[48] H. Engelhardt, W. Beck and T. Schmitt, “Capillary Electrophoresis,” Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1996.
[49] DAE-Interlaboratory Comparison Experiment (ILCE) for Trace Metal Assay of Uranium, Phase-II Experimets: Development of Certified U3O8 Reference Materials, Document, BARC, India, February 2002.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.