The Khuri-Jones Threshold Factor as an Automorphic Function
B. H. Lavenda
Università Degli Studi, Camerino, Italy.
DOI: 10.4236/jmp.2013.47122   PDF    HTML     2,868 Downloads   4,157 Views  

Abstract

The Khuri-Jones correction to the partial wave scattering amplitude at threshold is an automorphic function for a dihedron. An expression for the partial wave amplitude is obtained at the pole which the upper half-plane maps on to the interior of semi-infinite strip. The Lehmann ellipse exists below threshold for bound states. As the system goes from below to above threshold, the discrete dihedral (elliptic) group of Type 1 transforms into a Type 3 group, whose loxodromic elements leave the fixed points 0 and ∞ invariant. The transformation of the indifferent fixed points from -1 and +1 to the source-sink fixed points 0 and ∞ is the result of a finite resonance width in the imaginary component of the angular momentum. The change in symmetry of the groups, and consequently their tessellations, can be used to distinguish bound states from resonances.

Share and Cite:

B. Lavenda, "The Khuri-Jones Threshold Factor as an Automorphic Function," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 904-910. doi: 10.4236/jmp.2013.47122.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. N. Khuri, Physical Review, Vol. 130, 1963, pp. 429-435. doi:10.1103/PhysRev.130.429
[2] E. Jones, Lawrence Radiation Laboratory Report, UCRL10700, 1963.
[3] R. Omnès and M. Froissart, Mandelstam Theory and Regge Poles, Benjamin, New York, 1963.
[4] H. Poincaré, Rendiconti del Circolo Matematico di Palermo, Vol. 29, 1910, pp. 169-259. doi:10.1007/BF03014067
[5] A. O. Barut and D. E. Zwanziger, Physical Review, Vol. 127, 1962, pp. 974-977. doi:10.1103/PhysRev.127.974
[6] R. G. Newton, Journal of Mathematical Physics, Vol. 3, 1962, pp. 867-883. doi:10.1063/1.1724301
[7] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Eds., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953, p. 162.
[8] A. R. Forsyth, “Theory of Functions of a Complex Variable,” Vol. 2, 3rd Edition, Cambridge U.P., Cambridge, 1918, p. 692.
[9] F. Klein, “Elementary Mathematics from an Advanced Standpoint,” Macmillan, New York, 1932, pp. 115-117.
[10] S. Frautschi, “Regge Poles and S-Matrix Theory,” Benjamin, New York, 1963, p. 114.
[11] L. Bieberbach, “Conformal Mapping,” Chelsea, New York, 1953.
[12] H. Lehmann, Nuovo Cimento, Vol. 10, 1958, pp. 579-589. doi:10.1007/BF02859794
[13] D. Hilbert and R. Courant, “Methods of Mathematical Physics,” Vol. 1, Interscience, New York, 1953, pp. 501-508.
[14] L. R. Ford, “Automorphic Functions,” 2nd Edition, Chelsea, New York, 1929, p. 25.
[15] A. F. Beardon, “The Geometry of Discrete Groups,” Springer, New York, 1983, p. 82. doi:10.1007/978-1-4612-1146-4
[16] R. Omnès, “Introduction to Particle Physics,” Wiley-Interscience, New York, 1971, p. 347.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.