Role of Catalyst on the Formation of Resorcinol-Furfural Based Carbon Aerogels and Its Physical Properties

Abstract

Carbon aerogels (CAG) were synthesized by the pyrolysis of resorcinol-furfural based organic aerogels, derived from sol-gel polymerization of resorcinol and furfural using different catalysts followed by supercritical drying of as-prepared gels. Different catalysts viz. hydrochloric acid (HA), acetic acid (AcH) and hexamethylenetetramine (HMTA) of different concentrations were used for this purpose in order to study the role of different catalysts and the effect of R/C ratio (reactant to catalyst molar ratio) on the formation of organic gel monolith and their physical properties were investigated. Aerogels were thoroughly characterized by using CHN, FTIR, TG-DSC, XRD and SEM. A considerable reduction of gelation time and the formation of relatively denser organic gel were observed in the case of HMTA, which indicated the dual role (catalyst & cross-linking agent) of HMTA during the polymerization/polycondensation of resorcinol and furfural. Carbon aerogels obtained by using different catalysts showed BET surface area, average pore size, total pore volumes in the range of 438 496 m2/g, 17.9 22.4 ? and 0.20 0.27 cm3/g, respectively. The SEM images and results revealed the presence of different morphologies of carbon aerogels, obtained by using different catalysts. The HMTA catalyzed samples were found to have highest surface area with particles in smaller in size and well interconnected 3D carbon network.

Share and Cite:

Rejitha, K. , Abraham, P. , Panicker, N. , Jacob, K. and Pramanik, N. (2013) Role of Catalyst on the Formation of Resorcinol-Furfural Based Carbon Aerogels and Its Physical Properties. Advances in Nanoparticles, 2, 99-103. doi: 10.4236/anp.2013.22017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Kabbour, T. F. Baumann Jr., J. H. Satcher, A. Saulnier and C. C. Ahn, “Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels,” Chemistry of Materials, Vol. 18, No. 26, 2006, pp. 6085-6087. doi:10.1021/cm062329a
[2] H. Y. Tian, C. E. Buckly, S. B. Wang and M. F. Zhou, “Enhanced Hydrogen Storage Capacity in Carbon Aerogels Treated with KOH,” Carbon, Vol. 47, No. 8, 2009, pp. 2128-2130. doi:10.1016/j.carbon.2009.03.063
[3] M. Armandi, B. Boneli, I. Bottero, C. O. Arean and E. Garronem, “Synthesis and Characterization of Ordered Porous Carbons with Potential Applications as Hydrogen Storage Media,” Microporous and Mesoporous Materials, Vol. 103, No. 1-3, 2007, pp. 150-157. doi:10.1016/j.micromeso.2007.01.049
[4] H. Y. Tian, C. E. Buckley, S. Mule, M. Paskevicius and B. B. Dhal, “Preparation, Microstructure and Hydrogen Sorption Properties of Nano-Porous Carbon Aerogels Under Ambient Drying,” Nanotechnology, Vol. 19, No. 47, 2008. doi:10.1088/0957-4484/19/47/475605
[5] A. W. C. van den Berg and C. O. Arean, “Materials for Hydrogen Storage: Current Research Trends and Perspectives,” Chemical Communications, No. 6, 2008, pp. 668-681. doi:10.1039/B712576N
[6] S. Deng, X. Xiao, L. Han, Y. Li, S. Li, H. Ge, Q. Wang and L. Chen, “Hydrogen Storage Performance of 5LiBH4 + Mg2FeH6 Composite System,” International Journal of Hydrogen Energy, Vol. 37, No. 8, 2012, pp. 6733-6740. doi:10.1016/j.ijhydene.2012.01.094
[7] M. Shiraishi, T. Takenobu, H. Kataura and M. Ata, “Hydrogen Adsorption and Desorption in Carbon Nanotube Systems and its Mechanisms,” Applied Physics A, Vol. 78, No. 7, 2004, pp. 947-953. doi:10.1007/s00339-003-2413-0
[8] M. Haluska, M. Harcher, M. Becher, U. Dettlaff-Wegliskowka, X. Chen and S. Roth, “Interaction of Hydrogen Isotopes with Carbon Nanostructures,” Materials Science and Engineering B-Solid, Vol. 108, No. 1-2, 2004, pp. 130-133. doi:10.1016/j.mseb.2003.10.092
[9] S. Bhaumik, S. Murad and I. K. Puri, “Hydrogen Storage in Carbon Nanostructures: Possibilities and Challenges for Fundamental Molecular Simulations,” Proceedings of IEEE, Vol. 94, No. 10, 2006, pp.1806-1814. doi:10.1109/JPROC.2006.883703
[10] U. Fischer, R. Selagar, V. Block, R. Petricevic and J. Frick “Carbon Aerogel as Electrode Material in Supercapacitor,” Journal of Porous Materials, Vol. 4, No. 4, 1997, pp. 281-285. doi:10.1023/A:1009629423578
[11] R. A. Ganeev, P. A. Naik, J. A. Chakera, H. Singhal, N. C. Pramanik, P. A. Abraham, N. Rani Panicker, M. Kumar and P. D. Gupta, “Carbon Aerogel Plumes as an Efficient Medium for Higher Harmonic Generation in 50 90 nm Range,” Journal of the Optical Society of America B, Vol. 28, No. 3, 2011, pp. 360-364. doi:10.1364/JOSAB.28.000360
[12] N. Job, A. Théry, R. Pirard, J. Marien, L. Kocon, J. Rouzaud, F. Béguin and J. P. Pirard, “Carbon Aerogels, Cryogels and Xerogels: Influence of the Drying Method on the Textural Properties of Porous Carbon Materials,” Carbon, Vol. 43, No. 12, 2005, pp. 2481-2494. doi:10.1016/j.carbon.2005.04.031
[13] H. Y. Tian, C. E. Buckley, M. Paskevcius and D. A. Sheppard, “Acetic Acid Catalyzed Carbon Xerogels Derived from Resorcinol-Furfural for Hydrogen Storage,” International Journal of Hydrogen Energy, Vol. 36, No. 1, 2011, pp. 671-679. doi:10.1016/j.ijhydene.2010.10.054
[14] R. W. Pekala, “Organic Aerogel from Polycondensation of Resorcinol with Formaldehyde,” Journal of Materials Science, Vol. 24, No. 9, 1989, pp. 3221-3271. doi:10.1007/BF01139044
[15] R. W. Pekala, S. T. Mayer, J. L. Kaschmitter and F. M. Kong, “Carbon aerogels: An Update on Structure, Properties and Applications,” In: Y. A. Attia, Ed., Sol-Gel Processing and Applications, Plenum Press, New York, 1994, p. 369. doi:10.1007/978-1-4651-2570-7_32
[16] D. Wu, R. Fu, S. Zhang, M. S. Dresselhaus and G. Dresselhaus, “Preparation of Low Density Carbon Aerogels by Ambient Pressure Drying,” Carbon, Vol. 42, No. 10, 2004, pp. 2033-2039. doi:10.1016/j.carbon.2004.04.003
[17] D. Wu, R. Fu, S. Zhang, M. S. Dresselhaus and M. Dresselhaus, “The preparation of Carbon Aerogels Based upon the Gelation of Resorcinol-Furfural in Isopropanol with Organic Base Catalyst,” Journal of Non-Crystalline Solids, Vol. 336, No. 1, 2004, pp. 26-31. doi:10.1016/j.jnoncrysol.2003.12.051
[18] R. M. Silverstein and F. X. Webster, “Spectrometric Identification of Organic Compounds,” 6th Edition, John Wiley & Sons., New York, 1998.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.