Microstructure and Dielectric Properties of Bi Substituted PLZMST Ceramics

Abstract

Bismuth (Bi) and lanthanum (La) doped lead manganese antimoine zirconate titanate (PZMST) ceramic powders have been synthesized by high temperature solid-state reaction method. Preliminary X-ray structural analysis of the compounds shows the formation of tetragonal structure. Scanning electron micrographs (SEM) shows a uniform grain distribution and grain size of the order of ~2.28 μm. Detailed dielectric studies of the Pb0.95(La1-z Biz)0.05[(Zr0.6Ti0.4)0.95(Mn1/3Sb2/3)0.05]O3 samples as a function of the temperature (from 25°C to 450°C) at frequency 1 kHz suggest that the compounds undergo a diffuse phase transition. The transition temperature shifts increase with increasing the Bi ratio. Diffusivity (γ) study of phase transition of these compounds provided its value from 1.59 to 1.78 indicating the degree of the disordering in the system.

Share and Cite:

H. Menasra, Z. Necira, K. Bouneb, A. Maklid and A. Boutarfaia, "Microstructure and Dielectric Properties of Bi Substituted PLZMST Ceramics," Materials Sciences and Applications, Vol. 4 No. 5, 2013, pp. 293-298. doi: 10.4236/msa.2013.45037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Jaffe, W. R. Cook Jr. and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, New York, 1971.
[2] G. H. Haertling, “Ferroelectric Ceramics: History and Technology,” Journal of the American Ceramic Society, Vol. 82, No. 4, 1999, pp. 797-818. doi:10.1111/j.1151-2916.1999.tb01840.x
[3] B. Jaffe, R. S. Roth and S. Marzullo, “Piezoelectric PropErties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics,” Journal of Applied Physics, Vol. 25, No. 6, 1954, pp. 809-810. doi:10.1063/1.1721741
[4] F. Agullo-Lopez, J. M. Carbrera and F. Agullo-Rueda, “Electrooptics Phenomena, Materials and Applications,” Academic Press INC, San Diego, 1994, pp. 146-149.
[5] R. Rai, S. Sharma and R. N. P. Choudhary, “Effect of Al Doping on Structural and Dielectric Properties of PLZT Cramics,” Journal of Materials Science, Vol. 41, No. 13, 2006, pp. 4259-4265. doi:10.1007/s10853-005-5455-1
[6] H. Tamura, T. Knolle, Y. Sakable and K. Wakino, “Improved High-Q Dielectric Resonator with Complex Perovskite Structure,” Journal of the American Ceramic Society, Vol. 67, No. 4, 1984, pp. C59-C61.
[7] K. Wakino, K. Minal and H. Tamura, “Microwave Characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators,” Journal of the American Ceramic Society, Vol. 67, No. 4, 1984, pp. 278-281. doi:10.1111/j.1151-2916.1984.tb18847.x
[8] S. Dutta, R. N. P. Choudhary and P. K. Sinha, “Ferroelectric Phase Transition in Bi-Doped PLZT Ceramics,” Materials Science and Engineering: B, Vol. 98, No. 1, 2003, pp. 74-80. doi:10.1016/S0921-5107(02)00612-8
[9] R. N. P. Choudhary, “Phase Transition in Bimodified PLZT Ferroelectrics,” Materials Letters, Vol. 54, No. 2, 2002, pp. 175-180. doi:10.1016/S0167-577X(01)00559-6
[10] P. Goel, K. L. Yadav and A. R. James, “Double Doping Effect on the Structural and Dielectric Properties of PZT Ceramics,” Journal of Physics: Applied Physics, Vol. 37, No. 22, 2004, pp. 3174-3179. doi:10.1088/0022-3727/37/22/019
[11] S. Dutta, R. N. P. Choudhary and P. K. Sinha, “Ferroelectric Phase Transition in Sol-Gel Derived Bi-Doped PLZT Ceramics,” Journal of Materials Science, Vol. 39, No. 9, 2004, pp. 3129-3135. doi:10.1023/B:JMSC.0000025842.46451.64
[12] P. Goel and K. L. Yadav, “Substitution Site Effect on Structural and Dielectric Properties of La-Bi Modified PZT,” Journal of Materials Science, Vol. 42, No. 11, 2007, pp. 3928-3935. doi:10.1007/s10853-006-0416-x
[13] R. Rai, S. Sharma and R. N. P. Choudhary, “Structural and Dielectric Properties of Bi Modified PLZT Ceramics,” Solid State Communications, Vol. 133, No. 10, 2005, pp. 635-639. doi:10.1016/j.ssc.2005.01.005
[14] Y. K. Gao, K. Uchino and D. Viehland, “Rare Earth Metal Doping Effects on the Piezoelectric and Polarization Properties of Pb(Zr,Ti)O3-Pb(Sb,Mn)O3 Ceramics,” Journal of Applied Physics, Vol. 92, No. 4, 2002, pp. 20942099. doi:10.1063/1.1490617
[15] Z. G. Zhu, Z. J. Xu, W. Z. Zhang and Q. R. Yin, “Effect of PMS Modification on Dielectric and Piezoelectric Properties in xPMS-(1-x) PZT,” Journal of Physics: Applied Physics, Vol. 38, No. 9, 2005, pp. 1464-1469. doi:10.1088/0022-3727/38/9/021
[16] R. Rai, S. Mishra and N. K. Singh, “Effect of Fe and Mn Doping at B-Site of PLZT Ceramics on Dielectric Properties,” Journal of Alloys Compounds, Vol. 487, No. 40180, 2009, pp. 494-498. doi:10.1016/j.jallcom.2009.07.161
[17] K. Kakegawa, J. Mohri, T. Takahashi, H. Yammamura and K. Shirasaki (Solid State Communication), “A Compositional Fluctuation and Properties of Pb(Zr,Ti)O3,” Solid State Communications, Vol. 24, No. 11, 1977, pp. 769-772. doi:10.1016/0038-1098(77)91186-3
[18] A. Garg and D. C. Agarwal, “Effect of Rare Earth (Er, Gd, Eu, Nd and La) and Bismuth Additives on the Mechanical and Piezoelectric Properties of Lead Zirconate Titanate Ceramics,” Materials Science and Engineering: B, Vol. 86, No. 2, 2001, pp. 134-143. doi:10.1016/S0921-5107(01)00655-9
[19] S. R. Shanningrahi, F. E. H. Tay, K. Yao and R. N. P. Choudhary, Effect of Rare Earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) Ion Substitutions on the Microstructural and Electrical Properties of Sol-Gel Grown PZT Ceramics,” Journal of the European Ceramic Society, Vol. 24, No. 1, 2004, pp. 163-170. doi:10.1016/S0955-2219(03)00316-9
[20] A. Pelaiz-Barranco, “Ferroelectric Properties and Conduction Mechanisms in the Modified PZT Ceramic System,” Ph.D. Thesis, University of Havana, Havana, 2001.
[21] B. Tareev, “Physics of Dielectric Materials,” Mir Publisher, Moscow, 1979, p. 157.
[22] M. E. Lines and A. M. Glass, “Principles and Application of Ferroelectric and Related Materials,” Clarendon Press, Oxford, 1977.
[23] V. Koval, C. Alemany, J. Briancin and H. Bruncková, “Dielectric Properties and Phase Transition Behavior of xPMN-(1-x)PZT Ceramic Systems,” Journal of Electroceramics, Vol. 10, No. 1, 2003, pp. 19-29.
[24] G. A. Smolenskii, “X-Ray Scattering and the Phase Transition of KMnF3 at 184 K,” Journal of the Physical Society of Japan, Vol. 28, No. 2, 1970, pp. 26-37. doi:10.1023/A:1024023823871

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.