Discussion for the Solutions of Dyson-Schwinger Equations at m ≠ 0 in QED3

Abstract

In the case of nonzero fermion mass, within a range of Ansatze for the full fermion-boson vertex, we show that Dyson-Schwinger equation for the fermion propagator in QED3 has two qualitatively distinct dynamical chiral symmetry breaking solutions. As the fermion mass increases and reaches to a critical value mc, one solution disappears, and the dependence of mc on the number of fermion flavors is also given.

Share and Cite:

H. Zhu, H. Feng, W. Sun and H. Zong, "Discussion for the Solutions of Dyson-Schwinger Equations at m ≠ 0 in QED3," Journal of Modern Physics, Vol. 4 No. 4A, 2013, pp. 151-156. doi: 10.4236/jmp.2013.44A014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. D. Roberts and A. G. Williams, “Dynamical Chiral-Symmetry Breaking and Confinement with an Infrared-Vanishing Gluon Propagator,” Physical Review D, Vol. 49, No. 9, 1994, pp. 4683-4693. doi:10.1103/PhysRevD.49.4683
[2] C. D. Roberts and S. M. Schmidt, “Dyson-Schwinger Equations: Density, Temperature and Continuum Strong QCD,” Progress in Particle and Nuclear Physics, Vol. 45, Suppl. 1, 2000, pp. S1-S103. doi:10.1016/S0146-6410(00)90011-5
[3] H. S. Zong, W. M. Sun, J. L. Ping, X. F. Lu and F. Wang, “Does There Exist Only One Solution of the Dyson-Schwinger Equation for the Quark Propagator in the Case of Non-Zero Current Quark Mass,” Chinese Physics Letters, Vol. 22, No. 12, 2005, pp. 3036-3039. doi:10.1088/0256-307X/22/12/014
[4] L. Chang, Y. X. Liu, M. S. Bhagwat, C. D. Roberts and S. V. Wright, “Dynamical Chiral Symmetry Breaking and a Critical Mass,” Physical Review C, Vol. 75, No. 1, 2007, Article ID: 015201. doi:10.1103/PhysRevC.75.015201
[5] R. Williams, C. S. Fischer and M. R. Pennington, “qq Barq Condensate for Light Quarks Beyond the Chiral Limit,” Physics Letters B, Vol. 645, No. 2-3, 2007, pp. 167-172. doi:10.1016/j.physletb.2006.12.055
[6] R. Williams, C. S. Fischer and M. R. Pennington, “Quark Condensates: Flavour Dependence,” Acta Physica Polonica B, Vol. 38, No. 9, 2007, pp. 2803-2810.
[7] Y. Jiang, H. Gong, W. M. Sun and H. S. Zong, “Wigner Solution of the Quark Gap Equation at Nonzero Current Quark Mass and Partial Restoration of Chiral Symmetry at Finite Chemical Potential,” Physical Review D, Vol. 85, No. 3, 2012, Article ID: 034031. doi:10.1103/PhysRevD.85.034031
[8] P. Maris, “Confinement and Complex Singularities in 3-Dimensional QED,” Physical Review D, Vol. 52, No. 10, 1995, pp. 6087-6097. doi:10.1103/PhysRevD.52.6087
[9] C. J. Burden, J. Praschifka and C. D. Roberts, “Photon Polarization Tensor and Gauge Dependence in 3-Dimensional Quantum Electrodynamics,” Physical Review D, Vol. 46, No. 6, 1992, pp. 2695-2702. doi:10.1103/PhysRevD.46.2695
[10] G. Grignani, G. Semenoff and P. Sodano, “Confinement-Deconfinement Transition in Three-Dimensional QED,” Physical Review D, Vol. 53, No. 12, 1996, pp. 7157-7161. doi:10.1103/PhysRevD.53.7157
[11] J. M. Cornwall, “Confinement and Chiral-Symmetry Breakdown Estimates of FΠ and of Effective Quark masses,” Physical Review D, Vol. 22, No. 6, 1980, pp. 1452-1468. doi:10.1103/PhysRevD.22.1452
[12] R. D. Pisarski, “Chiral Symmetry Breaking in 3-Dimensional Electrodynamics,” Physical Review D, Vol. 29, No. 10, 1984, pp. 2423-2426. doi:10.1103/PhysRevD.29.2423
[13] T. Appelquist, et al., “Critical Behavior in (2 + 1)-Dimensional QED,” Physical Review Letters, Vol. 60, No. 25, 1988, pp. 2575-2578. doi:10.1103/PhysRevLett.60.2575
[14] D. Nash, “Higher-Order Corrections in (2 + 1)-Dimensional QED,” Physical Review Letters, Vol. 62, No. 26, 1989, pp. 3024-3026. doi:10.1103/PhysRevLett.62.3024
[15] P. Maris, “Influence of the Full Vertex and Vacuum Polarization on the Fermion Propagator in (2 + 1)-Dimensional QED,” Physical Review D, Vol. 54, No. 6, 1996, 4049-4058. doi:10.1103/PhysRevD.54.4049
[16] H. T. Feng, W. M. Sun, F. Hu and H. S. Zong, “The Influence of the Gauge Boson Mass on the Critical Number of the Fermion Flavors in QED3,” International Journal of Modern Physics A, Vol. 20, No. 13, 2005, pp. 2753- 2762. doi:10.1142/S0217751X05021130
[17] A. Bashir, A. Huet and A. Rays, “Gauge Dependence of Mass and Condensate in Chirally Asymmetric Phase of Quenched Three-Dimensional QED,” Physical Review D, Vol. 66, No. 2, 2002, Article ID: 025029. doi:10.1103/PhysRevD.66.025029
[18] J. S. Ball and T. W. Chiu, “Analytic Properties of the Vertex Function in Gauge-Theories,” Physical Review D, Vol. 22, No. 10, 1980, pp. 2542-2549. doi:10.1103/PhysRevD.22.2542
[19] D. C. Curtis and M. R. Pennington, “Truncating the Schwinger-Dyson Equations-How Multiplicative Renormalizability and the Ward Identity Restrict the 3-Point Vertex in QED,” Physical Review D, Vol. 42, No. 12, 1990, pp. 4165-4169. doi:10.1103/PhysRevD.42.4165
[20] J. E. King, “Transverse Vertex and Gauge Technique in Quantum Electrodynamics,” Physical Review D, Vol. 27, No. 7, 1983, pp. 1821-1829.
[21] A. Kizilers?u, M. Reedders and M. R. Pennington, “One-Loop QED Vertex in Any Covariant Gauge: Its Complete Analytic Form,” Physical Review D, Vol. 52, No. 2, 1995, pp. 1242-1259. doi:10.1103/PhysRevD.52.1242
[22] C. J. Burden and P. C. Tjiang, “Deconstructing the Vertex Ansatz in Three-Dimensional Quantum Electrodynamics,” Physical Review D, Vol. 58, No. 8, 1998, Article ID: 085019.
[23] K.-I. Kondo and H. Nakatani, “Cutoff Dependence of Self-Consistent Solutions in Unquenched QED3,” Progress Theoretical Physics, Vol. 87, No. 1, 1992, pp. 193-206. doi:10.1143/PTP.87.193
[24] C. S. Fischer, R. Alkofer, T. Dahm and P. Maris, “Dynamical Chiral Symmetry Breaking in Unquenched QED3,” Physical Review D, Vol. 70, No. 7, 2004, Article ID: 073007. doi:10.1103/PhysRevD.70.073007
[25] T. Appelquist, M. Bowick, D. Karabali and L. C. R. Wijewardhana, “Spontaneous Chiral-Symmetry Breaking in 3-Dimensional QED,” Physical Review D, Vol. 33, No. 12, 1986, pp. 3704-3713. doi:10.1103/PhysRevD.33.3704

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.