Amphetamine Conditioned Place Preference in Planarians

Abstract

Meth- and other amphetamines currently present major drug-abuse concerns. However, the demonstration and study of abuse-related behaviors expressed in animal models is expensive and time-consuming. We previously reported a novel model of conditioned place preference (CPP), which is a standard tool in abuse research, in invertebrates (planarians). In the present study, planarians were tested for light/dark preference, then exposed for 5 min to either d-amphetamine or vehicle (water) in light and then re-tested for place preference (light vs dark). The planarians’ natural strong preference for dark (15 of 16) was significantly altered by amphetamine experience, such that 12 of 16 preferred the unnatural, but amphetamine-associated, light side. These results extend the demonstration of CPP to this invertebrate species and provide further evidence in support of this model to testing/screening amphetamine-like and possibly other drugs of abuse.

Share and Cite:

R. Raffa, S. Shah, C. Tallarida and S. Rawls, "Amphetamine Conditioned Place Preference in Planarians," Journal of Behavioral and Brain Science, Vol. 3 No. 1, 2013, pp. 131-136. doi: 10.4236/jbbs.2013.31012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. Christensen, R. Sasane, P. Hodgkins, C. Harley and S. Tetali, “Pharmacological Treatment Patterns among Pa tients with Attention-Deficit/Hyperactivity Disorder: Ret rospective Claims-Based Analysis of a Managed Care Population,” Current Medical Research Opinion, Vol. 26, 2010, No. 4, pp. 977-989. doi:10.1185/03007991003673617
[2] G. Mattingly, “Lisdexamfetamine Dimesylate: A Prodrug Stimulant for the Treatment of ADHD in Children and Adults,” CNS Spectrum, Vol. 15, No. 5, 2010, pp. 315 325.
[3] G. Didato and L. Nobili, “Treatment of Narcolepsy,” Ex pert Reviews Neurotherapy, Vol. 9, No. 6, 2009, pp. 897 910. doi:10.1586/ern.09.29
[4] D. Ciccarone, “Stimulant Abuse: Pharmacology, Cocaine, Methamphetamine, Treatment, Attempts at Pharmacothe rapy,” Primary Care, Vol. 38, No. 1, 2011, pp. 41-58. doi:10.1016/j.pop.2010.11.004
[5] C. Y. Chen and K. M. Lin, “Health Consequences of Il legal Drug Use,” Current Opinion Psychiatry, Vol. 22, No. 3, 2009, pp. 287-292. doi:10.1097/YCO.0b013e32832a2349
[6] M. Gronig, A. Atalla and K. Kuschinsky, “Effects of Di zocilpine [(+)-MK-801] on the Expression of Associative and Non-Associative Sensitization to D-Amphetamine,” Naunyn Schmiedebergs Archives Pharmacology, Vol. 369, No. 2, 2004, pp. 228-231. doi:10.1007/s00210-003-0855-8
[7] V. Herzig, E. M. Capuani, K. A. Kovar and W. J. Sch midt, “Effects of MPEP on Expression of Food-, MDMA or Amphetamine-Conditioned Place Preference in Rats,” Addiction Biology, Vol. 10, No. 3, 2005, pp. 243-249. doi:10.1080/13556210500223272
[8] S. E. Tan, “Roles of Hippocampal NMDA Receptors and Nucleus Accumbens D1 Receptors in the Amphetamine Produced Conditioned Place Preference in Rats,” Brain Research Bulletin, Vol. 77, No. 6, 2008, pp. 412-419. doi:10.1016/j.brainresbull.2008.09.007
[9] T. M. Tzschentke and W. J. Schmidt, “Blockade of Mor phine and Amphetamine-Induced Conditioned Place Pre ference in the Rat by Riluzole,” Neuroscience Letters, Vol. 242, No. 2, 1998, pp. 114-116. doi:10.1016/S0304-3940(98)00023-8
[10] R. Ventura, S. Cabib, A. Alcaro, C. Orsini and S. Pug lisi-Allegra, “Norepinephrine in the Prefrontal Cortex is Critical for Amphetamine-Induced Reward and Mesoac cumbens Dopamine Release,” Journal of Neuroscience, Vol. 23, No. 5, 2003, pp. 1879-1885.
[11] B. Halbout, D. Quarta, E. Valerio, C. A. Heidbreder and D. M. Hutcheson, “The GABA-B Positive Modulator GS 39783 Decreases Psychostimulant Conditioned-Reinforce ment and Conditioned-Reward,” Addiction Biology, Vol. 16, No. 3, 2011, pp. 416-427. doi:10.1111/j.1369-1600.2010.00278.x
[12] J. S. Andrews and S. G. Holtzman, “Effects of Naloxone and Diprenorphine on Amphetamine-Stimulated Behavior in Guinea Pigs and Rats,” Neuropharmacology, Vol. 26, No. 8, 1987, pp. 1115-1120. doi:10.1016/0028-3908(87)90256-5
[13] A. M. Dlugos, A. Hamidovic, C. Hodgkinson, P. H. Shen, D. Goldman, A. A. Palmer and H. de Wit, “OPRM1 Gene Variants Modulate Amphetamine-Induced Euphoria in Humans,” Genes and Brain Behavior, Vol. 10, No. 2, 2011, pp. 199-209. doi:10.1111/j.1601-183X.2010.00655.x
[14] M. V. Gonzalez-Nicolini, W. Berglind, K. S. Cole, C. L. Keogh and J. F. McGinty, “Local mu and Delta Opioid Receptors Regulate Amphetamine-Induced Behavior and Neuropeptide mRNA in the Striatum,” Neuroscience, Vol. 121, No. 2, 2003, pp. 387-398. doi:10.1016/S0306-4522(03)00488-3
[15] J. Haggkvist, C. Bjorkholm, P. Steensland, S. Lindholm, J. Franck and B. Schilstrom, “Naltrexone Attenuates Am phetamine-Induced Locomotor Sensitization in the Rat,” Addiction Biology, Vol. 16, No. 1, 2011, pp. 20-29. doi:10.1111/j.1369-1600.2009.00199.x
[16] J. Haggkvist, S. Lindholm and J. Franck, “The Opioid Receptor Antagonist Naltrexone Attenuates Reinstate ment of Amphetamine Drug-Seeking in the Rat,” Behav ioral Brain Research, Vol. 197, No. 1, 2009, pp. 219-224. doi:10.1016/j.bbr.2008.08.021
[17] N. Jayaram-Lindstrom, M. Konstenius, S. Eksborg, O. Beck, A. Hammarberg and J. Franck, “Naltrexone Atte nuates the Subjective Effects of Amphetamine in Patients with Amphetamine Dependence,” Neuropsychopharma cology, Vol. 33, No. 8, 2008, pp. 1856-1863. doi:10.1038/sj.npp.1301572
[18] N. Jayaram-Lindstrom, P. Wennberg, Y. L. Hurd and J. Franck, “Effects of Naltrexone on the Subjective Re sponse to Amphetamine in Healthy Volunteers,” Journal of Clinical Psychopharmacology, Vol. 24, No. 6, 2004, pp. 665-669.doi:10.1097/01.jcp.0000144893.29987.e5
[19] C. Jimenez-Gomez, G. Winger, R. L. Dean, D. R. Deaver and J. H. Woods, “Naltrexone Decreases D-Amphetamine and Ethanol Self-Administration in Rhesus Monkeys,” Behavioral Pharmacology, Vol. 22, No. 1, 2011, pp. 87 90. doi:10.1097/FBP.0b013e3283423d55
[20] M. F. Olive, H. N. Koenig, M. A. Nannini and C. W. Hodge, “Stimulation of Endorphin Neurotransmission in the Nucleus Accumbens by Ethanol, Cocaine, and Am phetamine,” Journal of Neuroscience, Vol. 21, No. 23, 2001, p. RC184.
[21] C. A. Schad, J. B. Justice Jr. and S. G. Holtzman, “En dogenous Opioids in Dopaminergic Cell Body Regions Modulate Amphetamine-Induced Increases in Extracellu lar Dopamine Levels in the Terminal Regions,” Journal of Pharmacology and Experimental Therapeutics, Vol. 300, No. 3, 2002, pp. 932-938. doi:10.1124/jpet.300.3.932
[22] G. J. Schaefer and R. P. Michael, “Interactions of Nalo xone with Morphine, Amphetamine and Phencyclidine on Fixed Interval Responding for Intracranial Self-Stimula tion in Rats,” Psychopharmacology, Vol. 102, No. 2, 1990, pp. 263-268. doi:10.1007/BF02245931
[23] J. T. Winslow and K. A. Miczek, “Naltrexone Blocks Amphetamine-Induced Hyperactivity, but Not Disruption of Social and Agonistic Behavior in Mice and Squirrel Monkeys,” Psychopharmacology, Vol. 96, No. 4, 1988, pp. 493-499. doi:10.1007/BF02180030
[24] J. Wiskerke, D. Schetters, I. E. van Es, Y. van Mourik, B. R. den Hollander, A. N. Schoffelmeer and T. Pattij, “mu Opioid Receptors in the Nucleus Accumbens Shell Re gion Mediate the Effects of Amphetamine on Inhibitory Control but Not Impulsive Choice,” Journal of Neuro science, Vol. 31, No. 1, 2011, pp. 262-272. doi:10.1523/JNEUROSCI.4794-10.2011
[25] J. Haggkvist, S. Lindholm and J. Franck, “The Effect of Naltrexone on Amphetamine-Induced Conditioned Place Preference and Locomotor Behaviour in the Rat,” Addic tion Biology, Vol. 14, No. 3, 2009, pp. 260-269. doi:10.1111/j.1369-1600.2009.00150.x
[26] A. Ettenberg and C. L. Duvauchelle, “Haloperidol Blocks the Conditioned Place Preferences Induced by Rewarding Brain Stimulation,” Behavioral Neuroscience, Vol. 102, No. 5, 1988, pp. 687-691. doi:10.1037/0735-7044.102.5.687
[27] S. Mithani, M. T. Martin-Iverson, A. G. Phillips and H. C. Fibiger, “The Effects of Haloperidol on Amphetamine and Methylphenidate-Induced Conditioned Place Prefer ences and Locomotor Activity,” Psychopharmacology, Vol. 90, No. 2, 1986, pp. 247-252. doi:10.1007/BF00181251
[28] J. E. Sherman, T. Roberts, S. E. Roskam and E. W. Hol man, “Temporal Properties of the Rewarding and Aver sive Effects of Amphetamine in Rats,” Pharmacology, Biochemistry and Behavior, Vol. 13, No. 4, 1980, pp. 597-599. doi:10.1016/0091-3057(80)90288-9
[29] C. Spyraki, H. C. Fibiger and A. G. Phillips, “Dopaminer gic Substrates of Amphetamine-Induced Place Preference Conditioning,” Brain Research, Vol. 253, No. 1-2, 1982, pp. 185-193. doi:10.1016/0006-8993(82)90685-0
[30] C. Spyraki, H. C. Fibiger and A. G. Phillips, “Attenuation by Haloperidol of Place Preference Conditioning Using Food Reinforcement,” Psychopharmacology, Vol. 77, No. 4, 1982, pp. 379-382. doi:10.1007/BF00432775
[31] E. Childs and H. de Wit, “Amphetamine-Induced Place Preference in Humans,” Biological Psychiatry, Vol. 65, No. 10, 2009, pp. 900-904. doi:10.1016/j.biopsych.2008.11.016
[32] N. Hiroi and N. M. White, “The Reserpine-Sensitive Do pamine Pool Mediates (+)-Amphetamine-Conditioned Re ward in the Place Preference Paradigm,” Brain Research, Vol. 510, No. 1, 1990, pp. 33-42. doi:10.1016/0006-8993(90)90724-P
[33] D. C. Hoffman and R. J. Beninger, “The Effects of Selec tive Dopamine D1 or D2 Receptor Antagonists on the Es tablishment of Agonist-Induced Place Conditioning in Rats,” Pharmacology, Biochemistry and Behavior, Vol. 33, No. 2, 1989, pp. 273-279. doi:10.1016/0091-3057(89)90499-1
[34] P. Leone and G. Di Chiara, “Blockade of D-1 Receptors by SCH 23390 Antagonizes Morphine and Ampheta mine-Induced Place Preference Conditioning,” European Journal of Pharmacology, Vol. 135, No. 2, 1987, pp. 251-254. doi:10.1016/0014-2999(87)90621-2
[35] R. M. Liao, “Development of Conditioned Place Prefer ence Induced by Intra-Accumbens Infusion of Ampheta mine Is Attenuated by Co-Infusion of Dopamine D1 and D2 Receptor Antagonists,” Pharmacology, Biochemistry and Behavior, Vol. 89, No. 3, 2008, pp. 367-373. doi:10.1016/j.pbb.2008.01.009
[36] N. Hiroi and N. M. White, “The Amphetamine Condi tioned Place Preference: Differential Involvement of Do pamine Receptor Subtypes and Two Dopaminergic Ter minal Areas,” Brain Research, Vol. 552, No. 1, 1991, pp. 141-152. doi:10.1016/0006-8993(91)90672-I
[37] D. Marazziti, C. Di Pietro, S. Mandillo, E. Golini, R. Matteoni and G. P. Tocchini-Valentini, “Absence of the GPR37/PAEL Receptor Impairs Striatal Akt and ERK2 Phosphorylation, DeltaFosB Expression, and Conditioned Place Preference to Amphetamine and Cocaine,” FASEB Journal, Vol. 25, No. 6, 2011, pp. 2071-2081. doi:10.1096/fj.10-175737
[38] J. D. McCorvy, A. A. Harland, R. Maglathlin and D. E. Nichols, “A 5-HT(2C) Receptor Antagonist Potentiates a Low Dose Amphetamine-Induced Conditioned Place Pre ference,” Neuroscience Letters, Vol. 505, No. 1, 2011, pp. 10-13. doi:10.1016/j.neulet.2011.07.036
[39] E. Jerlhag, E. Egecioglu, S. L. Dickson and J. A. Engel, “Ghrelin Receptor Antagonism Attenuates Cocaine and Amphetamine-Induced Locomotor Stimulation, Accum bal Dopamine Release, and Conditioned Place Prefer ence,” Psychopharmacology, Vol. 211, No. 4, 2010, pp. 415 422. doi:10.1007/s00213-010-1907-7
[40] J. Y. Zhou, Z. X. Mo and S. W. Zhou, “Rhynchophylline Down-Regulates NR2B Expression in Cortex and Hippo campal CA1 Area of Amphetamine-Induced Conditioned Place Preference Rat,” Archives of Pharmacal Research, Vol. 33, No. 4, 2010, pp. 557-565. doi:10.1007/s12272-010-0410-3
[41] S. Sakurai, L. Yu and S. E. Tan, “Roles of Hippocampal N-methyl-D-aspartate Receptors and Calcium-Calmodu lin-Dependent Protein Kinase II in Amphetamine-produ ced Conditioned Place Preference in Rats,” Behavioral Pharmacology, Vol. 18, No. 5-6, 2007, pp. 497-506. doi:10.1097/FBP.0b013e3282ee7b62
[42] J. Qi, J. Y. Yang, F. Wang, Y. N. Zhao, M. Song and C. F. Wu, “Effects of Oxytocin on Methamphetamine-Induced Conditioned Place Preference and the Possible Role of Glutamatergic Neurotransmission in the Medial Prefron tal Cortex of Mice in Reinstatement,” Neuropharmacol ogy, Vol. 56, No. 5, 2009, pp. 856-865. doi:10.1016/j.neuropharm.2009.01.010
[43] J. L. Silverman and J. I. Koenig, “Evidence for the In volvement of ERbeta and RGS9-2 in 17-Beta Estradiol Enhancement of Amphetamine-Induced Place Preference Behavior,” Hormones and Behavior, Vol. 52, No. 2, 2007, pp. 146-155. doi:10.1016/j.yhbeh.2007.03.017
[44] F. Shen, G. E. Meredith and T. C. Napier, “Ampheta mine-Induced Place Preference and Conditioned Motor Sensitization Requires Activation of Tyrosine Kinase Re ceptors in the Hippocampus,” Journal of Neuroscience, Vol. 26, No. 43, 2006, pp. 11041-11051. doi:10.1523/JNEUROSCI.2898-06.2006
[45] H. Aujla and R. J. Beninger, “Intra-Accumbens Protein Kinase C Inhibitor NPC 15437 Blocks Amphetamine Produced Conditioned Place Preference in Rats,” Behavioral Brain Research, Vol. 147, No. 1-2, 2003, pp. 41-48. doi:10.1016/S0166-4328(03)00136-0
[46] F. Leri and K. B. Franklin, “Effects of Diazepam on Con ditioned Place Preference Induced by Morphine or Am phetamine in the Rat,” Psychopharmacology, Vol. 150, No. 4, 2000, pp. 351-360. doi:10.1007/s002130000448
[47] R. B. Raffa and S. M. Rawls, “Planaria: A Model for Drug Action and Abuse,” Landes Bioscience, 2008.
[48] F. R. Buttarelli, F. E. Pontieri, V. Margotta and G. Pal ladini, “Acetylcholine/Dopamine Interaction in Planaria,” Comparative Biochemistry and Physiology Part C Toxi cology and Pharmacology, Vol. 125, No. 2, 2000, pp. 225-231.
[49] S. Algeri, A. Carolei, P. Ferretti, C. Gallone, G. Palladini and G. Venturini, “Effects of Dopaminergic Agents on Monoamine Levels and Motor Behaviour in Planaria,” Comparative Biochemistry and Physiology Part C Toxi cology and Pharmacology, Vol. 74, No. 1, 1983, pp. 27-29. doi:10.1016/0742-8413(83)90142-1
[50] G. Palladini, S. Ruggeri, F. Stocchi, M. F. De Pandis, G. Venturini and V. Margotta, “A Pharmacological Study of Cocaine Activity in Planaria,” Comparative Biochemistry and Physiology Part C Toxicology and Pharmacology, Vol. 115, No. 1, 1996, pp. 41-45. doi:10.1016/S0742-8413(96)00053-9
[51] F. Passarelli, A. Merante, F. E. Pontieri, V. Margotta, G. Venturini and G. Palladini, “Opioid-Dopamine Interac tion in Planaria: A Behavioral Study,” Comparative Bio chemistry and Physiology Part C Toxicology and Phar macology, Vol. 124, No. 1, 1999, pp. 51-55. doi:10.1016/S0742-8413(99)00048-1
[52] P. Ribeiro, F. El-Shehabi and N. Patocka, “Classical Trans mitters and Their Receptors in Flatworms,” Parasitology, Vol. 131, No. S1, 2005, pp. S19-S40. doi:10.1017/S0031182005008565
[53] G. Venturini, A. Carolei, G. Palladini, V. Margotta and M. G. Lauro, “Radioimmunological and Immunocytochemi cal Demonstration of Met-Enkephalin in Planaria,” Com parative Biochemistry and Physiology Part C Toxicology and Pharmacology, Vol. 74, No. 1, 1983, pp. 23-25. doi:10.1016/0742-8413(83)90141-X
[54] G. Venturini, F. Stocchi, V. Margotta, S. Ruggieri, D. Bravi, P. Bellantuono and G. Palladini, “A Pharmacol ogical Study of Dopaminergic Receptors in Planaria,” Neuropharmacology, Vol. 28, No. 12, 1989, pp. 1377 1382. doi:10.1016/0028-3908(89)90013-0
[55] J. H. Welsh and L. D. Williams, “Monoamine-Containing Neurons in Planaria,” Journal of Comparative Neurology, Vol. 138, No. 1, 1970, pp. 103-115. doi:10.1002/cne.901380108
[56] R. B. Raffa and P. Desai, “Description and Quantification of Cocaine Withdrawal Signs in Planaria,” Brain Research, Vol. 1032, No. 1-2, 2005, pp. 200-202. doi:10.1016/j.brainres.2004.10.052
[57] R. B. Raffa, G. W. Stagliano and S. Umeda, “kappa-Opi oid Withdrawal in Planaria,” Neuroscience Letters, Vol. 349, No. 3, 2003, pp. 139-142. doi:10.1016/S0304-3940(03)00814-0
[58] R. B. Raffa and J. M. Valdez, “Cocaine Withdrawal in Planaria,” European Journal of Pharmacology, Vol. 430, No. 1, 2001, pp. 143-145. doi:10.1016/S0014-2999(01)01358-9
[59] S. Umeda, G. W. Stagliano and R. B. Raffa, “Cocaine and Kappa-Opioid Withdrawal in Planaria Blocked by D-, but Not L-, Glucose,” Brain Research, Vol. 1018, No. 2, 2004, pp. 181-185. doi:10.1016/j.brainres.2004.05.057
[60] A. L. Rowlands and O. R. Pagan, “Parthenolide Prevents the Expression of Cocaine-Induced Withdrawal Behavior in Planarians,” European Journal of Pharmacology, Vol. 583, No. 1, 2008, pp. 170-172. doi:10.1016/j.ejphar.2008.01.012
[61] O. R. Pagan, A. L. Rowlands, M. Azam, K. R. Urban, A. H. Bidja, D. M. Roy, R. B. Feeney and L. K. Afshari, “Reversal of Cocaine-Induced Planarian Behavior by Par thenolide and Related Sesquiterpene Lactones,” Pharma cology, Biochemistry and Behavior, Vol. 89, No. 2, 2008, pp. 160-170. doi:10.1016/j.pbb.2007.12.008
[62] S. M. Rawls, T. Patil, C. S. Tallarida, S. Baron, M. Kim, K. Song, S. Ward and R. B. Raffa, “Nicotine Behavioral Pharmacology: Clues from Planarians,” Drug and Alco hol Dependence, Vol. 118, No. 2-3, 2011, pp. 274-279. doi:10.1016/j.drugalcdep.2011.04.001
[63] L. Ramoz, S. Lodi, P. Bhatt, A. B. Reitz, C. Tallarida, R. J. Tallarida, R. B. Raffa and S. M. Rawls, “Mephedrone (‘Bath Salt’) Pharmacology: Insights from Invertebrates,” Neuroscience, Vol. 208, 2012, pp. 79-84. doi:10.1016/j.neuroscience.2012.01.019
[64] R. B. Raffa, C. S. Dasrath and D. R. Brown, “Disruption of a Drug-Induced Choice Behavior by UV Light,” Be havioral Pharmacology, Vol. 14, No. 7, 2003, pp. 569 571. doi:10.1097/00008877-200311000-00010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.