Synergistic Effect of Fullerene-Capped Gold Nanoparticles on Graphene Electrochemical Supercapacitors

Abstract

We report the synthesis of graphene/fullerene-capped gold nanoparticle nanocomposite film which was used to construct supercapacitor electrodes. The fullerene-based self-assembled monolayers on gold nanoparticles (AuNPs) were attained via the fullerene(C60)-gold interaction. The fullerene-capped AuNPs effectively separated the graphene sheets preventing aggregation. A synergistic effect was observed—the specific capacitance of graphene/fullerene-capped AuNP electrode is197 F/g, which is higher than that of graphene electrode (31 F/g), graphene/AuNP electrode (126 F/g), and graphene/fullerene electrode (118 F/g). The results render a novel route of synthesis and modification of graphene-based materials for the construction of electrochemical energy storage devices.

Share and Cite:

Yong, V. and Hahn, H. (2013) Synergistic Effect of Fullerene-Capped Gold Nanoparticles on Graphene Electrochemical Supercapacitors. Advances in Nanoparticles, 2, 1-5. doi: 10.4236/anp.2013.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, Vol. 318, No. 6042, 1985, pp. 162-163. doi:10.1038/318162a0
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896
[3] V. Yong and J. M. Tour, “Theoretical Efficiency of Nanostructured Graphene-Based Photovoltaics,” Small, Vol. 6, No. 2, 2010, pp. 313-318. doi:10.1002/smll.200901364
[4] D. Yu and L. Dai, “Self-Assembled Graphene/Carbon Nanotube Hybrid Filmsfor Supercapacitors,” Journal of Physical Chemistry Letters, Vol. 1, No. 2, 2010, pp. 467 470. doi:10.1021/jz9003137
[5] L. L. Zhang, R. Zhou and X. S. Zhao, “Graphene-Based Materials as Supercapacitor Electrodes,” Journal of Materials Chemistry, Vol. 20, No. 29, 2010, pp. 5983-5992. doi:10.1039/c000417k
[6] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An and R. S. Ruoff, “Graphene-Based Ultracapacitors,” Nano Letters, Vol. 8, No. 10, 2008, pp. 3498-3502. doi:10.1021/nl802558y
[7] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” Chemical Reviews, Vol. 105, No. 4, 2005, pp. 1103-1169. doi:10.1021/cr0300789
[8] B. Bhushan, “Springer Handbook of Nanotechnology,” 3rd Edition, Springer, Berlin, 2010. doi:10.1007/978-3-642-02525-9
[9] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos and P. L. McEuen, “Nanomechanical Oscillations in a Single-C60Transistor,” Nature, Vol. 407, No. 6800, 2000, pp. 57-60. doi:10.1038/35024031
[10] G. J. Bubnis, S. M. Cleary and H. R. Mayne, “Self-Assembly and Structural Behavior of a Model Rigid C60 Terminated Thiolate on Au(111),” Chemical Physics Letters, Vol. 470, No. 4-6, 2009, pp. 289-294. doi:10.1016/j.cplett.2009.01.071
[11] L. Buglione, A. Bonanni, A. Ambrosi and M. Pumera, “Gold Nanospacers Greatly Enhance the Capacitance of Electrochemically Reduced Graphene,” ChemPlusChem, Vol. 77, No. 1, 2012, pp. 71-73. doi:10.1002/cplu.201100016
[12] R. Klajn, M. A. Olson, P. J. Wesson, L. Fang, A. Coskun, A. Trabolsi, S. Soh, J. F. Stoddart and B. A. Grzybowski, “Dynamic Hook-and-Eye Nanoparticle Sponges,” Nature Chemistry, Vol. 1, No. 9, 2009, pp. 733-738. doi:10.1038/nchem.432
[13] V. Yong and H. T. Hahn, “Graphene Growth with Giant Domains Using Chemical Vapor Deposition,” CrystEngComm, Vol. 13, No. 23, 2011, pp. 6933-6936. doi:10.1039/c1ce05714f
[14] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-Ray Photoelectron Spectroscopy,” Physical Electronics Division, Perkin-Elmer Corp., Norwalk, 1995.
[15] J. C. Zhou, X. H. Wang, M. Xue, Z. Xu, T. Hamasaki, Y. Yang, K. Wang and B. Dunn, “Characterization of Gold Nanoparticle Binding to Microtubule Filaments,” Materials Science & Engineering C, Vol. 30, No. 1, 2010, pp. 20-26. doi:10.1016/j.msec.2009.08.003
[16] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, “Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System,” Journal of the Chemical Society, Chemical Communications, No. 7, 1994, pp. 801-802. doi:10.1039/c39940000801
[17] M. C. Bourg, A. Badia and R. B. Lennox, “Gold-Sulfur Bonding in 2D and 3D Self-Assembled Monolayers: XPS Characterization,” Journal of Physical Chemistry B, Vol. 104, No. 28, 2000, pp. 6562-6567. doi:10.1021/jp9935337
[18] M. Brust, C. J. Kiely, D. Bethell and D. J. Schiffrin, “C60 Mediated Aggregation of Gold Nanoparticles,” Journal of the American Chemical Society, Vol. 120, No. 47, 1998, pp. 12367-12368. doi:10.1021/ja982776u
[19] J. T. Lyon and L. Andrews, “Infrared Spectrum of the Au-C60 Complex,” ChemPhysChem, Vol. 6, No. 2, 2005, pp. 229-232. doi:10.1002/cphc.200400467
[20] V. J. Keast, A. J. Scott, R. Brydson, D. B. Williams and J. Bruley, “Electron Energy-Loss Near-Edge Structure—A Tool for the Investigation of Electronic Structure on the Nanometre Scale,” Journal of Microscopy, Vol. 203, No. 2, 2001, pp. 135-175. doi:10.1046/j.1365-2818.2001.00898.x
[21] V. P. Dravid, S. Z. Liu and M. M. Kappes, “Transmission Electron Microscopy of Chromatographically Purified Solid State C60 and C70,” Chemical Physics Letters, Vol. 185, No. 1-2, 1991, pp. 75-81. doi:10.1016/0009-2614(91)80143-L

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.