Share This Article:

Terrestrial Ecosystem Carbon Fluxes Predicted from MODIS Satellite Data and Large-Scale Disturbance Modeling

Abstract Full-Text HTML XML Download Download as PDF (Size:1116KB) PP. 469-479
DOI: 10.4236/ijg.2012.33050    4,652 Downloads   7,421 Views   Citations

ABSTRACT

The CASA (Carnegie-Ames-Stanford) ecosystem model based on satellite greenness observations has been used to estimate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009. The CASA model was driven by NASA Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover properties and large-scale (1-km resolution) disturbance events detected in biweekly time series data. This modeling framework has been implemented to estimate historical as well as current monthly patterns in plant carbon fixation, living biomass increments, and long-term decay of woody (slash) pools before, during, and after land cover disturbance events. Results showed that CASA model predictions closely followed the seasonal timing of Ameriflux tower measurements. At a global level, predicting net ecosystem production (NEP) flux for atmospheric CO2 from 2000 through 2005 showed a roughly balanced terrestrial biosphere carbon cycle. Beginning in 2006, global NEP fluxes became increasingly imbalanced, starting from -0.9 Pg C yr-1 to the largest negative (total net terrestrial source) flux of -2.2 Pg C yr-1 in 2009. In addition, the global sum of CO2 emissions from forest disturbance and biomass burning for 2009 was predicted at 0.51 Pg C yr-1. These results demonstrate the potential to monitor and validate terrestrial carbon fluxes using NASA satellite data as inputs to ecosystem models.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

C. Potter, S. Klooster, V. Genovese, C. Hiatt, S. Boriah, V. Kumar, V. Mithal and A. Garg, "Terrestrial Ecosystem Carbon Fluxes Predicted from MODIS Satellite Data and Large-Scale Disturbance Modeling," International Journal of Geosciences, Vol. 3 No. 3, 2012, pp. 469-479. doi: 10.4236/ijg.2012.33050.

References

[1] R. A. Houghton, “The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use 1850-1990,” Tellus, Vol. 51(B), 1999, pp. 298-313.
[2] C. S. Potter, “Terrestrial Biomass and the Effects of Deforestation on the Global Carbon Cycle,” BioScience, Vol. 49, No. 10, 1999, pp. 769-778. doi:10.2307/1313568
[3] P. M. Fearnside, “Global Warming and Tropical Land- Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation,” Climatic Change, Vol. 46, No. 1-2, 2000, pp. 115-158.doi:10.1023/A:1005569915357
[4] A. D. McGuire, S. Sitch and J. S. Clein, “Carbon Balance of the Terrestrial Biosphere in the Twentieth Century: Analyses of CO2, Climate and Land Use Effects with Four Process-Based Ecosystem Models,” Global Biogeochemical Cycles, Vol. 15, No. 1, 2001, pp. 183-206.doi:10.1029/2000GB001298
[5] R. S. DeFries, R. A. Houghton and M. C. Hansen, “Carbon Emissions from Tropical Deforestation and Regrowth Based on Satellite Observations for the 1980s and 1990s,” Proceedings of the National Academy of Science USA, Vol. 99, 2002, pp. 14256-14261.doi:10.1073/pnas.182560099
[6] F. Achard, H. D. Eva, P. Mayaux, J. Stibig and A. Belward, “Improved Estimates of Net Carbon Emissions from Land Cover Change in the Tropics for the 1990s,” Global Biogeochemical Cycles, Vol. 18, No. 2, 2004, 11 p.
[7] C. S. Potter, S. Klooster and V. Genovese, “Carbon Emissions from Deforestation in the Brazilian Amazon Region,” Biogeosciences, Vol. 6, No. 11, 2009, pp. 2369- 2381. doi:10.5194/bg-6-2369-2009
[8] N. Ramankutty, H. K. Gibbs, F. Achard, R. Defries, J. A. Foley and R. A. Houghton, “Challenges to Estimating Carbon Emissions from Tropical Deforestation,” Global Change Biology, Vol. 13, No. 1, 2007, pp. 51-66.doi:10.1111/j.1365-2486.2006.01272.x
[9] C. S. Potter, J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney and S. A. Klooster, “Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data,” Global Biogeochemical Cycles, Vol. 7, No. 4, 1993, pp. 811-841.doi:10.1029/93GB02725
[10] A. Huete, K. Didan, T. Miura and E. Rodriguez, “Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices.” Remote Sensing of Environment, Vol. 83, 2002, pp. 195-213.doi:10.1016/S0034-4257(02)00096-2
[11] A. Huete, K. Didan, Y. E. Shimabukuro, P. Ratana, S. R. Saleska, L. R. Hutyra, D. Fitzjarrald, W. Yang, R. R. Nemani and R. Myneni, “Amazon Rainforests Green-Up with Sunlight in Dry Season,” Geophysical Research Letters, Vol. 33, 2006, Article ID: L06405.doi:10.1029/2005GL025583
[12] C. Potter, S. Klooster, R. Myneni, V. Genovese, P. Tan and V. Kumar, “Continental Scale Comparisons of Terrestrial Carbon Sinks Estimated from Satellite Data and Ecosystem Modeling 1982-1998,” Global and Planetary Change, Vol. 39, 2003, pp. 201-213.doi:10.1016/j.gloplacha.2003.07.001
[13] C. Potter, S. Klooster and V. Genovese, “Net Primary Production of Terrestrial Ecosystems from 2000 to 2009,” Climatic Change, Vol. 113, 2012, pp. 1-13. doi:10.1007/s10584-012-0460-2
[14] X. Xiao, S. Hagen, Q. Zhang, M. Keller and B. Moore III, “Detecting Leaf Phenology of Seasonally Moist Tropical Forests in South America with Multi-Temporal MODIS Images,” Remote Sensing of Environment, Vol. 103, No. 4, 2006, pp. 465-473. doi:10.1016/j.rse.2006.04.013
[15] R. R. Colditz, C. Conrad, T. Wehrmann, M. Schmidt and S. W. Dech, “Analysis of the Quality of Collection 4 and 5 Vegetation Index Time Series from MODIS,” ISPRS Spatial Data Quality Symposium, CRC press, Enschede, 2007.
[16] J. L. Monteith, “Solar Radiation and Productivity in Tropical Ecosystems,” Journal of Applied Ecology, Vol. 9, No. 3, 1972, pp. 747-766. doi:10.2307/2401901
[17] R. J. Olson, J. M. O. Scurlock, W. Cramer, W. J. Parton and S. D. Prince, “From Sparse Field Observations to a Consistent Global Dataset on Net Primary Production,” IGBP-DIS Working Paper No. 16, IGBP-DIS, Toulouse, 1997.
[18] R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousky, H. van den Dool, R. Jenne and M. Fiorino, “The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation,” Bulletin of the American Meteorological Society, Vol. 82, No. 2, 2001, pp. 247- 268.doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
[19] M. Zhao and S. W. Running, “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 through 2009,” Science, Vol. 329, No. 5994, 2010, pp. 940-943. doi:10.1126/science.1192666
[20] C. H. B. Priestly and R. J. Taylor, “On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters,” Monthly Weather Review, Vol. 100, No. 2, 1972, pp. 81-92.doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
[21] D. C. Nepstad, C. R. de Carvalho, E. A. Davidson, P. H. Jipp, P. A. Lefebvre, G. H. Negreiros, E. D. da Silva, T. A. Stone, S. E. Trumbore and S. Vieira, “The Role of Deep Roots in the Hydrological and Carbon Cycles of Amazonian Forests and Pastures,” Nature, Vol. 372, No. 6507, 1994, pp. 666-669. doi:10.1038/372666a0
[22] X. Xiao, Q. Zhang, S. R. Saleska, L. Hutyra, P. Camargo, S. Wofsy, S. Frolking, S. Boles, M. Keller and B. Moore III, “Satellite-Based Modeling of Gross Primary Production in a Seasonally Moist Tropical Evergreen Forest,” Remote Sensing of Environment, Vol. 94, 2005, pp. 105-122. doi:10.1016/j.rse.2004.08.015
[23] K. Ichii, H. Hashimoto, M. A. White, C. Potter, L. R. Hutyra, A. R. Huete, R. B. Myneni and R. R. Nemani, “Constraining Rooting Depths in Tropical Rainforests Using Satellite Data and Ecosystem Modeling for Accurate Simulation of GPP Seasonality,” Global Change Biology, Vol. 13, No. 1, 2007, pp. 67-77.doi:10.1111/j.1365-2486.2006.01277.x
[24] A. R. Jumikis, “Thermal Soil Mechanics,” Rutgers University Press, New Brunswick, 1966.
[25] G. B. Bonan, “A Computer Model of the Solar Radiation, Soil Moisture and Soil Thermal Regimes in Boreal Forests,” Ecological Modelling, Vol. 45, No. 4, 1989, pp. 275-306. doi:10.1016/0304-3800(89)90076-8
[26] B. Walker and W. Steffen, “An Overview of the Implications of Global Change for Natural and Managed Terrestrial Ecosystems,” Conservation Ecology, Vol. 1, No. 2, 1997, pp. 2-17.
[27] C. S. Potter, V. Brooks-Genovese, S. Klooster and A. Torregrosa, “Biomass Burning Emissions of Reactive Gases Estimated from Satellite Data Analysis and Ecosystem Modeling for the Brazilian Amazon Region,” Journal of Geophysical Research, Vol. 107, No. D20, 2002, pp. 8056-8066. doi:10.1029/2000JD000250
[28] R. A. Houghton, D. L. Skole, C. A. Nobre , J. L. Hackler, K.T. Lawrence and W. H. Chomentowski, “Annual Fluxes of Carbon from Deforestation and Regrowth in the Brazilian Amazon,” Nature, Vol. 403, No. 6767, 2000, pp. 301-304. doi:10.1038/35002062
[29] J. S. Reid, E. J. Hyer, E. M. Prins, D. L. Westphal, J. Zhang, J. Wang, S. A. Christopher, C. A. Curtis, C. C. Schmidt, D. P. Eleuterio, K. A. Richardson and J. P. Hoffman, “Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 3, No. 2, 2009, pp. 144-162.doi:10.1109/JSTARS.2009.2027443
[30] J. B. Kauffman, D. L. Cummings, D. E. Ward and R. Babbitt, “Fire in the Brazilian Amazon: Biomass, Nutrient Pools, and Losses in Slashed Primary Forests,” Oecologia, Vol. 104, No. 4, 1995, pp. 397-408.doi:10.1007/BF00341336
[31] C. L. Sorrensen, “Linking Smallholder Land Use and Fire Activity: Examining Biomass Burning in the Brazilian Lower Amazon,” Forest Ecology and Management, Vol. 128, No. 1, 2000, pp. 11-25.doi:10.1016/S0378-1127(99)00283-2
[32] W. M. Hao and M.-H. Lui, “Spatial and Temporal Distribution of Tropical Biomass Burning,” Global Biogeochemical Cycles, Vol. 8, No. 4, 1994, pp. 495-503.doi:10.1029/94GB02086
[33] D. E. Ward, W.-M. Hao, R. A. Susott, R. A. Babbitt, R. W. Shea, J. B. Kauffman and C. O. Justice, “Effect of Fuel Composition on Combustion Efficiency and Emission Factors for African Savanna Ecosystems,” Journal of Geophysical Research, Vol. 101, No. D19, 1996, pp. 23569-23576. doi:10.1029/95JD02595
[34] W. Seiler and P. J. Crutzen, “Estimates of Gross and Net Fluxes of Carbon between the Biosphere and the Atmosphere from Biomass Burning,” Climatic Change, Vol. 2, 1980, pp. 207-247. doi:10.1007/BF00137988
[35] M. Scholes, P. Matrai, K. Smith, M. Andreae and A. Guenther, “Biosphere-Atmosphere Interactions, in Atmospheric Chemistry in a Changing World,” Cambridge University Press, New York, 2000.
[36] V. Mithal, A. Garg, I. Brugere, S. Boriah, V. Kumar, M. Steinbach, C. Potter and S. A. Klooster, “Incorporating Natural Variation into Time Series-Based Land Cover Change Detection,” Proceedings of the 2011 NASA Conference on Intelligent Data Understanding, Mountain View, 19-21 October 2001, pp. 45-59.
[37] C. O. Justice, L. Giglio, D. Roy, L. Boschetti, I. Csiszar, D. Davies, S. Korontzi, W. Schroeder, K. O’Neal and J. Morisette, “MODIS-Derived Global Fire Products,” In: B. Ramachandran, C. O. Justice and M. J. Abrams, Eds., Land Remote Sensing and Global Environmental Change, Springer, Berlin, 2011, pp. 661-679.
[38] L. Misson, J. Tang, M. Xu, M. McKay and A. Goldstein, “Influences of Recovery from Clear-Cut, Climate Variability, and Thinning on the Carbon Balance of a Young Ponderosa Pine Plantation,” Agricultural and Forest Meteorology, Vol. 130, 2005, pp. 207-222.doi:10.1016/j.agrformet.2005.04.001
[39] X. Tang, Z. Wang, D. Liu, K. Song, M. Jia, Z. Dong, J. W. Munger, D. Y. Hollinger, P. V. Bolstad, A. H. Gold- stein, A. R. Desai, D. Dragoni and X. Liu, “Estimating the Net Ecosystem Exchange for the Major Forests in the Northern United States by Integrating MODIS and Ame- riFlux Data,” Agricultural and Forest Meteorology, Vol. 156, 2012, pp. 75-84. doi:10.1016/j.agrformet.2012.01.003
[40] W. Cramer, D. W. Kicklighter, A. Bondeau, B. Moore, G. Churkina, B. Nemry, A. Ruimy and A. L. Schloss, “Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Overview and Key Results,” Global Change Biology, Vol. 5, 1999, pp. 1-15.doi:10.1046/j.1365-2486.1999.00009.x
[41] R. R. Nemani, C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni and S. W. Running, “Climate Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999,” Science, Vol. 300, No. 5625, 2003, pp. 1560-1563.doi:10.1126/science.1082750
[42] World Meteorological Organization, “WMO Statement on the Status of the Global Climate in 2001,” WMO#670, 2001.
[43] Food and Agriculture Organization (FAO) of the United Nations, “Global Forest Resource Assessment, FAO Forestry Paper 163,” Rome, 2010, 340 p.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.