[1]

W. K. Hale, “Frequency Assignment: Theory and Applications,” Proceedings of IEEE, Vol. 68, No. 12, 1980, pp. 14971514. doi:10.1109/PROC.1980.11899


[2]

A. A. Bertossi and M. A. Bonuccelli, “Code Assignment for Hidden Terminal Interference Avoidance in Multihope Packet Radio Networks,” IEEE/ACM Transactions on Networking, Vol. 3, No. 4, 1995, pp. 441449.
doi:10.1109/90.413218


[3]

X. T. Jin and R. K. Yeh, “Graph DistanceDependent Labelling Related to Code Assignment in Computer Networks,” Naval Research Logistics, Vol. 51, 2004, pp. 159164.


[4]

T. Makansi, “TransmitterOriented Code Assignment for Multihop Packet Radio,” IEEE Transactions on Communications, Vol. 35, No. 12, 1987, pp. 13791382.
doi:10.1109/TCOM.1987.1096728


[5]

J. P. Georges and D. W. Mauro, “Generalized Vertex Labeling with a Condition at Distance Two,” Congressus Numerantium, Vol. 140, 1995, pp. 141159.


[6]

A. A. Bertossi, M. C. Pinotti and R. Rizzi, “Channel Assignment on StronglySimplicial Graphs,” IEEE Proceedings of International Parallel and Distributed Processing Symposium (IPDPS’03), Nice, 2226 April 2003, pp. 2226.


[7]

H. L. Bodlaender, T. Kloks, R. B. Tan and J. Van Leeuwen, “Approximations for λColorings of Graphs,” The Computer Journal, Vol. 47, No. 2, 2004, pp. 193204.
doi:10.1093/comjnl/47.2.193


[8]

T. Calamoneri, “The L(h, k)Labelling Problem: A Survey and Annotated Bibliography,” The Computer Journal, Vol. 49, No. 5, 2009, pp. 585630.
doi:10.1093/comjnl/bxl018


[9]

P. J. Wan, “WearOptimal ConflictFree Channel Set Assignments for an Optical ClusterBased Hypercube Network,” Journal of Combinatorial Optimization, Vol. 1, 1997, pp. 179186. doi:10.1023/A:1009759916586


[10]

N. Alon and B. Mohar, “The Chromatic Number of Graph Powers,” Combinatorics, Probability and Computing, Vol. 11, No. 1, 2002, pp. 110.
doi:10.1017/S0963548301004965


[11]

S. H. Chiang and J. H. Yan, “On L(d, 1)Labeling of Cartesian Product of a Path,” Discrete Applied Mathematics, Vol. 156, No. 15, 2008, pp. 28672881.
doi:10.1016/j.dam.2007.11.019


[12]

J. R. Griggs and R. K. Yeh, “Labeling Graphs with a Condition at Distance 2,” SIAM Journal on Discrete Mathematics, Vol. 5, No. 4, 1992, pp. 586595.
doi:10.1137/0405048


[13]

R. K. Yeh, “Labeling Graphs with a Condition at Distance Two,” Ph.D Thesis, University of South Carolina, Columbia, 1990.


[14]

D. Kral and R. Skrekovski, “A Theorem on Channel Assignment Problem,” SIAM Journal on Discrete Mathematics, Vol. 16, No. 3, 2003, pp. 426437.
doi:10.1137/S0895480101399449


[15]

D. Goncalves, “On the L(p,1)Labelling of Graphs, in: EuroCom 2005,” Discrete Mathematics and Theoretical Computer Science Proceedings, Vol. AE, 2005, pp. 8186.


[16]

J. Van den Heuvel and S. McGuinnes, “Coloring the Square of a Plannar Graph,” Journal of Graph Theory, Vol. 42, No. 2, 2003, pp. 110124.
doi:10.1002/jgt.10077


[17]

M. Molloy and M. R. Salavatipour, “A Bound on the Chromatic Number of the Square of a Planar Graph,” Journal of Combinatorial Theory, Series B, Vol. 94, No. 2, 2005, pp. 189213. doi:10.1016/j.jctb.2004.12.005


[18]

W. F. Wang and K. W. Lih, “Labelling Planar Graphs with Conditions on Girth and Distance Two,” SIAM Journal on Discrete Mathematics, Vol. 17, 2004, pp. 499509.


[19]

N. Khan, A. Pal and M. Pal, “L(2,1)Labelling of Cactus Graphs,” Communicated.


[20]

S. S. Adams, J. Cass, M. Tesch, D. S. Troxell and C. Wheeland, “The Minimum Span of L(2,1)Labeling of Certain Generalized Petersen Graphs,” Discrete Applied Mathematics, Vol. 155, No. 1, 2007, pp. 13141325.
doi:10.1016/j.dam.2006.12.001


[21]

G. J. Chang, W. T. Ke, D. Kuo, D. D. F. Lin and R. K. Yeh, “On L(d,1)Labellings of Graphs,” Discrete Mathematics, Vol. 220, 2000, pp. 5766.
doi:10.1016/S0012365X(99)004008


[22]

G. J. Chang and C. Lu, “Distance Two Labelling of Graphs,” European Journal of Combinatorics, Vol. 24, 2003, pp. 5358. doi:10.1016/S01956698(02)001348


[23]

J. Fiala, T. Kloks and J. Kratochvil, “FixedParameter Complexity of λLabelling,” Discrete Applied Mathematics, Vol. 133, No. 1, 2001, pp. 5972.
doi:10.1016/S0166218X(00)003875


[24]

J. Georges and D. W. Mauro, “On Generalized Petersen Graphs Labelled with a Condition at Distance Two,” Discrete Mathematics, Vol. 259, No. 13, 2002, pp. 311318. doi:10.1016/S0012365X(02)003023


[25]

J. Georges, D. W. Mauro and M. I. Stein, “Labelling Products of Complete Graphs with a Condition at Distance Two,” SIAM Journal on Discrete Mathematics, Vol. 14, 2000, pp. 2835. doi:10.1137/S0895480199351859


[26]

P. K. Jha, “Optimal L(2,1)Labelling of Cartesian Products of Cycles with an Application to Independent Domination,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 47, No. 10, 2000, pp. 15311534. doi:10.1109/81.886984


[27]

S. Klavzar and A. Vesel, “Computing Graph Invariants on Rotagraphs Using Dynamic Algorithm Approach: The Case of L(2,1)Colorings and Independence Numbers,” Discrete Applied Mathematics, Vol. 129, 2003, pp. 449460. doi:10.1016/S0166218X(02)005978


[28]

D. Kuo and J. H. Yan, “On L(2,1)Labelling of Cartesian Products of Paths and Cycles,” Discrete Mathematics, Vol. 283, No. 13, 2004, pp. 137144.
doi:10.1016/j.disc.2003.11.009


[29]

C. Schwarz and D. S. Troxell, “L(2,1)Labelling of Products of Two Cycles,” Discrete Applied Mathematics, Vol. 154, No. 13, 2006, pp. 15221540.
doi:10.1016/j.dam.2005.12.006


[30]

R. K. Yeh, “The Edge Span of Distance Two Labelling of Graphs,” Taiwanese Journal of Mathematics, Vol. 4, No. 4, 2000, pp. 675683.


[31]

R. Battiti, A. A. Bertossi and M. A. Bonuccelli, “Assigning Code in Wireless Networks: Bounds and Scaling Properties,” Wireless Networks, Vol. 5, No. 3, 1999, pp. 195209. doi:10.1023/A:1019146910724

