Optical, Photoelectrochemical, and Electrochemical Impedance Studies on Photoactive Organic/Inorganic/Interface Assemblies of Poly 2,2 Bithiophene/Poly 3-(2-Thienyl) Aniline (PThA)/TiO2

HTML  XML Download Download as PDF (Size: 3314KB)  PP. 50-67  
DOI: 10.4236/msce.2018.68005    850 Downloads   1,767 Views  Citations

ABSTRACT

Particles of TiO2 modified with poly 3-(2-thienyl) aniline (PThA) and occluded in poly 2,2 bithiophene (PBTh), were subjected to optical, electrochemical impedance spectroscopic (EIS) and photoelectrochemical (PEC) investigation in aqueous, acetate, citrate, and phosphate electrolytes. EIS studies revealed that the assembly film of TiO2/PThA/PBTh possess porous-type structure. They also confirmed the approximate value of Ef obtained from electrochemical studies. Both EIS and optical studies indicated that ac conductivity is much greater than dc conductivity. Guided by the properties of PBTh, no large changes in the energy band structure occurred due to occlusion of TiO2 in PBTh films. Occlusion of TiO2/PThA into the network structure of PBTh inhibits the energy dissipation process and impeded charge polarization process of the material. Photoelectrochemical outcome suggested possible band alignments between the organic film and TiO2 and formation of hybrid sub-bands. Inclusion of TiO2 in the thiophene-based polymers enhanced the charge separation and consequently charge transfer processes and widen the absorption in visible light range.

Share and Cite:

Kasem, K. , Sadou, H. , Worley, H. and Wenger, J. (2018) Optical, Photoelectrochemical, and Electrochemical Impedance Studies on Photoactive Organic/Inorganic/Interface Assemblies of Poly 2,2 Bithiophene/Poly 3-(2-Thienyl) Aniline (PThA)/TiO2. Journal of Materials Science and Chemical Engineering, 6, 50-67. doi: 10.4236/msce.2018.68005.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.