Hydrodeoxygenation of Bio-Oil on Bimetallic Catalysts: From Model Compound to Real Feed

HTML  XML Download Download as PDF (Size: 433KB)  PP. 151-160  
DOI: 10.4236/jsbs.2015.54014    4,638 Downloads   7,362 Views  Citations

ABSTRACT

Two series of bimetallic Ni-Co catalysts and corresponding monometallic catalysts with ca. 20 wt% metal loading were evaluated in hydrodeoxygenation (HDO) of phenol as a model compound for bio-oil. The bimetallic catalysts outperformed the corresponding monometallic catalyst in terms of conversion and cyclohexane selectivity. This could be attributed to the formation of Ni-Co alloy, which caused a decrease in metal particle size and stabilized Ni active sites in the near surface region. The balanced combination of formed Ni-Co alloy with acidity from supports allowed performing all individual steps in the reaction network toward desired products at high rate. Consequently, the two best-performing catalysts were tested in HDO of wood based bio-oil, showing that the bimetallic catalyst 10Ni10Co/HZSM-5 was more effective than 20Ni/HZSM-5 in terms of degree of deoxygenation and upgraded bio-oil yield. These findings might open an opportunity for development of a novel cheap but effective catalyst for a key step in the process chain from biomass to renewable liquid fuels.

Share and Cite:

Huynh, T. , Armbruster, U. , Nguyen, L. , Nguyen, D. and Martin, A. (2015) Hydrodeoxygenation of Bio-Oil on Bimetallic Catalysts: From Model Compound to Real Feed. Journal of Sustainable Bioenergy Systems, 5, 151-160. doi: 10.4236/jsbs.2015.54014.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.