Reprogramming mouse ear mesenchymal stem cells (EMSC) expressing the Dlk1-Dio3 imprinted gene cluster

HTML  XML Download Download as PDF (Size: 997KB)  PP. 64-71  
DOI: 10.4236/scd.2013.31010    5,303 Downloads   8,720 Views  Citations

ABSTRACT

The identification of a single, early marker for full developmental potential of induced pluripotent stem (iPS) cells has proven elusive. Recently, however, activation of the imprinted gene cluster, Dlk1-Dio3 has emerged as a viable candidate in the mouse. To explore the relationship between Dlk1-Dio3 expression and developmental potential more fully, we used murine ear mesenchymal stem cells (mEMSC) for iPS cell induction. Mouse EMSC are easily obtained and share functional characteristics with embryonic stem (ES) cells and therefore, may be a reliable non-embryonic source for iPS cell production. We report that mEMSC express high levels of Gtl2, a maternally expressed gene within the Dlk1-Dio3 imprinted cluster. Moreover, mEMSC produce Gtl2 expressing (Gtl2on) iPSC clones that share functional characteristics with ES cell clones. The production of Gtl2on iPS cell clones from mEMSC provides a new model with which to investigate the regulation of Dlk1-Dio3 cluster activity during direct cell reprogramming.

Share and Cite:

Gao, R. , S. Rim, J. , L. Strickler, K. , W. Barnes, C. , L. Harkins, L. , Staszkiewicz, J. , M. Gimble, J. , Gawronska-Kozak, B. , H. Leno, G. and J. Eilertsen, K. (2013) Reprogramming mouse ear mesenchymal stem cells (EMSC) expressing the Dlk1-Dio3 imprinted gene cluster. Stem Cell Discovery, 3, 64-71. doi: 10.4236/scd.2013.31010.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.