Kinetic Study of Non-Isothermal Crystallization in Se90-xZn10Sbx (x = 0, 2, 4, 6) Chalcogenide Glasses

HTML  Download Download as PDF (Size: 1318KB)  PP. 111-120  
DOI: 10.4236/jcpt.2014.42014    3,274 Downloads   5,091 Views  Citations

ABSTRACT

Crystallization and glass transition kinetics of Se90-xZn10Sbx (x = 0, 2, 4, 6) chalcogenide glasses prepared by conventional melt-quenching technique were studied under non-isothermal condition using a differential scanning Calorimeter (DSC) measurement at different heating rates 5, 7, 10 and 12°C/min. The glass transition temperatures Tg, the crystallization temperatures Tc and the peak temperatures of crystallization Tp were found to be dependent on the compositions and the heating rates. From the dependence on the heating rates of Tg and Tp, the activation energy for glass transition, Eg, and the activation energy for crystallization, Ec, are calculated and their composition dependence is discussed. The activation energy of glass transition Eg, Avrami index n, dimensionality of growth m and activation energy of crystallization Ec have been determined from different models.

Share and Cite:

Heireche, L. , Heireche, M. and Belhadji, M. (2014) Kinetic Study of Non-Isothermal Crystallization in Se90-xZn10Sbx (x = 0, 2, 4, 6) Chalcogenide Glasses. Journal of Crystallization Process and Technology, 4, 111-120. doi: 10.4236/jcpt.2014.42014.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.