Share This Article:

Responses of the Host Plant Tissues to Gall Induction in Aspidosperma spruceanum Müell. Arg. (Apocynaceae)

Abstract Full-Text HTML Download Download as PDF (Size:2905KB) PP. 823-834
DOI: 10.4236/ajps.2011.26097    4,917 Downloads   8,897 Views   Citations

ABSTRACT

The ontogenetic characterization of the leaf galls induced in the internervural region and in the second and third order veins of A. spruceanum Müell Arg. (Apocynaceae) aims to evaluate the distinct levels of cell reaction during the process of gall formation, and the relation between external gall morphology and the oviposition sites. The ground system had the most remarkable alterations, namely, the non differentiation of palisade parenchyma in both leaf sides, the hyperplasia of the spongy parenchyma and the neoformation of fibersclereids, a cell type not observed in non galled leaves. Changes of the feeding sites inside the larval chamber reveal distinct levels of cell competence to respond to the insects stimuli and explain the variations in the shape of the larval chamber.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Formiga, G. Soares and R. Isaias, "Responses of the Host Plant Tissues to Gall Induction in Aspidosperma spruceanum Müell. Arg. (Apocynaceae)," American Journal of Plant Sciences, Vol. 2 No. 6, 2011, pp. 823-834. doi: 10.4236/ajps.2011.26097.

References

[1] T. Nyman and R. Julkunen-Titto, “Manipulation of the Phenolic Chemistry of Willows by Gall-Inducing Sawflies,” Proceedings of the National Academy of Sciences, Vol. 97, No. 24, 2000, pp. 13184-1318. doi:10.1073/pnas.230294097
[2] R. Dawkins, “The Extended Phenotype the Gene as the Unit of Selection,” Oxford University Press, New York, 1982.
[3] J. D. Shorthouse, D. Wool and A. Raman, “Gall-Inducing Insect—Nature’s Most Sophisticated Herbivores,” Basic and Applied Ecology, Vol. 6, No. 5, 2005, pp. 407-411. doi:10.1016/j.baae.2005.07.001
[4] M. Z. D. Moura, R. M. S. Isaias and G. L. G. Soares, “Species-Specific Changes in Tissue Morphogenesis Induced by Two Arthropod Leaf Gallers in Lantana camara L. (Verbenaceae),” Australian Journal of Botany, Vol. 56, No. 2, 2008, pp. 153-160. doi:10.1071/BT07131
[5] D. C. Oliveira and R. M. S. Isaias, “Cytological and Histochemical Gradients Induced by a Sucking Insect in Galls of Aspidosperma australe Arg. Muell (Apocynaceae),” Plant Science, Vol. 178, No. 4, 2010, pp. 350-358. doi:10.1016/j.plantsci.2010.02.002
[6] M. S. Mani, “Ecology of Plant Galls,” Dr. W. Junk Publish, Hague, 1964.
[7] J. Meyer and H. J. Maresquelle, “Anatomie des Galles,” Gerbrüder Borntraeger, Berlin, 1983.
[8] L. A. Rey, “Developmental Morphology of Two Types of Hymenopterous Galls,” In: J. D. Shorthouse and O. Rohfritsch. Eds., Biology of Insect Induced Galls, Oxford University, Oxford, 1992.
[9] S. Lev-Yadun, “Stem Cells in Plants are Differentiated Too,” Current Opinion in Plant Biology, Vol. 4, 2003, pp. 93-100.
[10] D. E. Fosket, “Plant Growth and Development. A Molecular Approach,” Academic Press, London. 1994.
[11] R. Bronner, “The Role of Nutritive Cells in the Nutrition of Cynipids and Cecidomyiids,” In: J. D. Shorthouse and O. Rohfritsch, Eds., Biology of Insect Induced Galls, Oxford University, Oxford, 1992.
[12] A. T. Formiga, S. J. M. R. Gon?alves, G. L. G. Soares and R. M. S. Isaias, “Rela??es Entre o Teor de Fenólicos e o Ciclo das Galhas de Cecidomyiidae em Aspidosperma spruceanum Müell Arg. (Apocynaceae),” Acta Botanica Brasilica, Vol. 23, No. 1, 2009, pp. 93-99. doi:10.1590/S0102-33062009000100012
[13] P. T. Campos, M. C. D. Costa, R. M. S. Isaias, A. S. F. P. Moreira, D. C. Oliveira and J. P. Lemos-Filho, “Phenological Relationships between Two Insect Galls and Their Host Plants: Aspidosperma australe and A. spruceanum (Apocynaceae),” Acta Botanica Brasilica, Vol. 24, No. 3, 2010, pp. 727-733. doi:10.1590/S0102-33062010000300016
[14] D. A. Johansen, “Plant Microtechnique,” McGraw-Hill Book, New York, 1940.
[15] J. E. Kraus and M. Arduin, “Manual Básico de Métodos em Morfologia Vegetal,” Ed. Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 1997.
[16] T. P. O’Brien and M. E. McCully, “The Study of Plant Structure Principles and Selected Methods,” Termarcarphi PTX, Mellrime, 1981.
[17] A. G. Pearse, “Histochemistry, Theoretical and Applied,” Churchill-Livingstone, Edinburgh, Vol. 1, 1968.
[18] W. A. Jensen, “Botanical Histochemistry: Principles and Practice,” W. H. Freeman and Company, San Francisco, 1962.
[19] W. Feucht, P. P. S. Schmid and E. Christ, “Distribution of Flavanols in Meristematic and Mature Tissues of Prunus avium Shoots,” Journal of Plant Physiology, Vol. 125, No. 1-2, 1986, pp. 1-8.
[20] W. Feucht, D. Treutter and E. Christ, “Role of Flavanols in Yellowish Beech Trees of the Black Forest,” Tree Physiology, Vol. 17, No. 5, 1997, pp. 335-340.
[21] J. E. Sass, “Botanical Microtechnique,” The Iowa State University Press, Ames, 1958.
[22] C. Vallet, B. Chabbert, Y. Czaninski and B. Monties, “Histochemistry of Lignin Deposition during Sclerenchyma Differentiation in Alfalfa Stems,” Annals of Botany, Vol. 78, No. 5, 1996, pp. 625-632. doi:10.1006/anbo.1996.0170
[23] J. Lin, X. He, Y. Hu, T. Kuang and R. Ceulemans, “Lignification and Lignin Heterogeneity for Various Age Classes of Bamboo (Phyllostachys pubescens) Stems,” Physiologia Plantarum, Vol. 114, No. 2, 2002, pp. 296-302. doi:10.1034/j.1399-3054.2002.1140216.x
[24] A. Mansour and E. De Fays, “Rhythmic Growth Rings of Wood and Their Relationship with the Foliage in Oak Seedlings Grown in a Favourable Environment,” Annals of Botany, Vol. 82, No. 1, 1998, pp. 89-96. doi:10.1006/anbo.1998.0648
[25] S. Rosseti and P. M. Bonnatti, “In Situ Histochemical Monitoring of Ozoneand TMV Induced Reactive Oxygen Species in Tobacco Leaves,” Plant Physiology and Biochemistry, Vol. 39, No. 5, 2001, pp. 433-442. doi:10.1016/S0981-9428(01)01250-5
[26] F. Dreger-Jauffret and J. D. Shorthouse, “Diversity of Gall-Inducing Insects and Their Galls,” In: J. D. Shorthouse and O. Rohfritsch, Eds., Biology of Insect-Induced Galls, Oxford University, Oxford. 1992.
[27] O. Rohfritsch, “Patterns in Gall Development,” In: J. D. Shorthouse and O. Rohfritsch, Eds., Biology of Insect Induced Galls, Oxford University, Oxford. 1992.
[28] J. Meyer, “Plant Gall and Gall Inducers,” Gerbrüder Borntraeger, Berlin, 1987.
[29] R. Buvat, “Ontogeny, Cell Differentiation, and Structure of Vascular Plants,” Springer-Verlag, Berlin, 1989. doi:10.1007/978-3-642-73635-3
[30] M. S. Mani, “Introduction to Cecidology,” In: J. D. Shorthouse and O. Rohfritsch, Eds. Biology of Insect-Induced Galls, Oxford University Press, New York, 1992, pp. 3-7.
[31] A. Raman and C. Devadas, “Morphology, Anatomy and Development of the Midrib Galls on the Leaflets of Lannea coromandelica (Hoult.) Merrill (Anacardiaceae) Caused by Odinadiplosis odinae Mani (Diptera),” Proceedings of the Indian National Science Academy, Vol. 86, No. 3, 1977, pp. 159-166.
[32] J. E. Kraus, H. C. Sugiura and S. Cutrupi, “Morfologia e Ontogenia em Galhas Entomógenas de Guarea macrophylla subsp. Tuberculata (Meliaceae),” Fitopatologia Brasileira, Vol. 21, No. 3, 1996, pp. 349-356.
[33] L. DeBruyn, I. Vandevyvere, D. Jaminé and E. Prinsen, “The Effects of Gall Formation by Lipara lucens (Diptera, Choropidae) on its Host Phragmites australis (Poaceae),” In: G. Csóka, W. J. Mattson, G. N. Stone and P. W. Price, Eds., The Biology of Gall-Inducing Arthropods, Forest Service USDA, St. Paul, 1998.
[34] M. Arduin, J. E. Kraus and M. Venturelli, “Estudo Morfológico de Galha Achatada em Folha de Struthanthus vulgaris Mart. (Loranthaceae),” Revista Brasileira de Botanica, Vol. 14, 1991, pp. 47-156.
[35] S. F. Fink, “Pathological and Regenerative Plant Anatomy,” Gebrüder Borntraeger, Berlin, 1999.
[36] R. M. S. Isaias, “Galhas Entomógenas em Machaerium (Leguminosae-Papilionoidae): Anatomia e Histoquímic,” Tese de Doutorado, Universidade de S?o Paulo, S?o Paulo, 1998.
[37] C. Vecchi, “Galha Foliar em Tibouchina pulchra (Cham.) Cogn. (Melastomataceae): MorfoAnatomia e Ontogenia,” Disserta??o de Mestrado, Universidade de S?o Paulo, S?o Paulo, 1999.
[38] J. E. Kraus, J. A. Solórzano Filho, M. Arduin and R. M. S. Isaias, “Respostas Morfogenéticas de Plantas Brasileiras à Insetos Galhadores,” In: R. Fortunato and N. Bacigalupo, Eds., Monographs in Systematic Botany from the Missouri Botanical Garden, Missouri Botanical Garden, Sr. Louis, 1998.
[39] D. A. Herms and W. J. Mattson, “The Dilemma of Plants: To Grow or Defend,” Quarterly Review of Botany, Vol. 67, No. 3, 1992, pp. 283-335.
[40] B. J. Deverall, “Defense Mechanisms of Plants,” Cambridge Press, New York, 1977.
[41] R. Bronner, “Contribution l′etude Histochimique des Tissus Nourriciers des Zoocecidies,” Marcellia, Vol. 40, 1977, pp. 1-134.
[42] S. Coruh and S. Ercisli, “Interactions between Galling Insects and Plant Total Phenolic Contents in Rosa canina L. Genotypes,” Scientific Research and Essays, Vol. 5, No. 14, 2010, pp. 1935-1937. doi:10.1146/annurev.phyto.45.062806.094325
[43] R. Hückelhoven, “Cell Wall—Associated Mechanisms of Disease Resistance and Susceptibility,” Annual Review of Phytopathology, Vol. 45, 2007, pp. 101-127.
[44] K. Apel and H. Hirt, “Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction,” Annual Review of Plant Biology, Vol. 55, 2004, pp. 373-399. doi:10.1146/annurev.arplant.55.031903.141701
[45] O. R. Gottlieb, M. A. C. Kaplan and M. R. M. B. Borin, “Biodiversidade. Um Enfoque Químico-Biológico,” Editora da UFRJ, Rio de Janeiro, 1996.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.