Share This Article:

Evaluation of a Recombinant Measles Virus as the Expression Vector of Hepatitis C Virus Envelope Proteins

Abstract Full-Text HTML Download Download as PDF (Size:398KB) PP. 98-103
DOI: 10.4236/wjv.2011.13010    4,126 Downloads   8,508 Views   Citations

ABSTRACT

Measles virus (MV) is a negative strand RNA virus of the family Paramyxoviridae, and the attenuated Edmonston-B strain can be engineered by the reverse genetics system. Here we constructed the recombinant Edmonston strain of measles virus (MV-Ed) that expressed hepatitis C virus (HCV) envelope proteins (rMV-E1E2). The rMV-E1E2 successfully expressed HCV E1 and E2 proteins. To evaluate its immunogenicity, NOD/Scid/Jak3null mice that were engrafted with human peripheral blood mononuclear cells (huPBMC-NOJ) were infected with this rMV-E1E2. Although human lymphocytes could be isolated from the spleens of mock-infected mice during the 2-weeks-long experiment, the proportion of mice that were infected with MV or rMV-E1E2 was decreased in a viral dose-dependent manner. Over 103 PFU of virus infection decreased the human PBL to less than 5%. Significant decrease of B cell population in human PBL from rMV-E1E2 infected NOD-SCID mice and decrease of T cell population in those from MV infected mice were observed. Human antibody production in these mice was also examined. Thus, the results in this study may contribute for future improvement of recombinant vaccine using measles virus vector.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Kasama, M. Satoh, M. Saito, S. Okada, C. Kai and K. Tsukiyama-Kohara, "Evaluation of a Recombinant Measles Virus as the Expression Vector of Hepatitis C Virus Envelope Proteins," World Journal of Vaccines, Vol. 1 No. 3, 2011, pp. 98-103. doi: 10.4236/wjv.2011.13010.

References

[1] F. Radecke, P. Spielhofer, H. Schneider, et al., “Rescue of Measles Viruses from Cloned DNA,” EMBO Journal, Vol. 14, No. 23, 1995, pp. 5773-5784.
[2] S. Brandler, M. Lucas-Hourani, A. Moris, et al., “Pediatric Measles Vaccine Expressing a Dengue Antigen Induces Durable Serotype-Specific Neutralizing Antibodies to Dengue Virus,” PLoS Neglected Tropical Diseases, Vol. 1, No. 3, 2007, pp. e96-e108. doi:10.1371/journal.pntd.0000096
[3] S. Brandler and F. Tangy, “Recombinant Vector Derived from Live Attenuated Measles Virus: Potential for Flavivirus Vaccines,” Comparative Immunology, Microbiology and Infectious Diseases, Vol. 31, No. 2-3, 2008, pp. 271-291. doi:10.1016/j.cimid.2007.07.012
[4] C. Lorin, L. Mollet, F. Delebecque, et al., “A Single Injection of Recombinant Measles Virus Vaccines Expressing Human Immunodeficiency Virus (HIV) Type 1 Clade B Envelope Glycoproteins Induces Neutralizing Antibodies and Cellular Immune Responses to HIV,” Journal of Virology, Vol. 78, No. 1, 2004, pp. 146-157. doi:10.1128/JVI.78.1.146-157.2004
[5] G. Cantarella, M. Liniger, A. Zuniga, et al., “Recombinant Measles Virus-HPV Vaccine Candidates for Prevention of Cervical Carcinoma,” Vaccine, Vol. 27, 2009, pp. 3385-3390. doi:10.1016/j.vaccine.2009.01.061
[6] M. Liniger, A. Zuniga, A. Tamin, et al., “Induction of Neutralising Antibodies and Cellular Immune Responses against SARS Coronavirus by Recombinant Measles Viruses,” Vaccine, Vol. 26, No. 17, 2008, pp. 2164-2174.
[7] P. Despres, C. Combredet, M. P. Frenkiel, et al., “Live Measles Vaccine Expressing the Secreted Form of the West Nile Virus Envelope Glycoprotein Protects against West Nile Virus Encephalitis,” Journal of Infectious Diseases, Vol. 191, No. 2, 2005, pp. 207-214. doi:10.1086/426824
[8] C. Combredet, V. Labrousse, L. Mollet, et al., “A Molecularly Cloned Schwarz Strain of Measles Virus Vaccine Induces Strong Immune Responses in Macaques and Transgenic Mice,” Journal of Virology, Vol. 77, No. 21, 2003, pp. 11546-11554. doi:10.1128/JVI.77.21.11546-11554.2003
[9] D. Naniche, M. Garenne, C. Rae, et al., “Decrease in Measles Virus-Specific CD4 T Cell Memory in Vaccinated Subjects,” Journal of Infectious Diseases, Vol. 190, 2004, pp. 1387-1395. doi:10.1086/424571
[10] I. G. Ovsyannikova, N. Dhiman, R. M. Jacobson, R. A. Vierkant and G. A. Poland, “Frequency of Measles Virus-Specific CD4+ And CD8+ T Cells in Subjects Seronegative or Highly Seropositive for Measles Vaccine,” Clinical and Diagnostic Laboratory Immunology, Vol. 10, No. 3, 2003, pp. 411-416.
[11] A. M. Di Bisceglie, R. L. Carithers Jr. and G. J. Gores, “Hepatocellular Carcinoma,” Hepatology, Vol. 28, No. 5, 1998, pp. 1161-1165. doi:10.1002/hep.510280436
[12] Global Surveillance and Control of Hepatitis C, “Report of a WHO Consultation Organized in Collaboration with the Viral Hepatitis Prevention Board, Antwerp,” Journal of Viral Hepatitis, Vol. 6, No. 1, 1999, pp. 35-47. doi:10.1046/j.1365-2893.1999.6120139.x
[13] F. Zoulim, M. Chevallier, M. Maynard and C. Trepo, “Clinical Consequences of Hepatitis C Virus Infection,” Reviews in Medical Virology, Vol. 13, No. 1, 2003, pp. 57-68. doi:10.1002/rmv.371
[14] A. Bruchfeld, L. Stahle, J. Andersson and R. Schvarcz, “Ribavirin Treatment in Dialysis Patients with Chronic Hepatitis C Virus Infection—A Pilot Study,” Journal of Viral Hepatitis, Vol. 8, No. 4, 2001, pp. 287-292. doi:10.1046/j.1365-2893.2001.00300.x
[15] G. Mazzella, E. Accogli, S. Sottili, et al., “Alpha Interferon Treatment May Prevent Hepatocellular Carcinoma in HCV-Related Liver Cirrhosis,” Journal of Hepatology, Vol. 24, No. 2, 1996, pp. 141-147. doi:10.1016/S0168-8278(96)80022-5
[16] M. Kohara, T. Tanaka, K. Tsukiyama-Kohara, et al., “Hepatitis C Virus Genotypes 1 And 2 Respond to Interferon-Alpha with Different Virologic Kinetics,” Journal of Infectious Diseases, Vol. 172, 1995, pp. 934-938. doi:10.1093/infdis/172.4.934
[17] H. Nakamura, H. Ogawa, T. Kuroda, et al., “Interferon Treatment for Patients with Chronic Hepatitis C Infected with High Viral Load of Genotype 2 Virus,” Hepatogastroenterology, Vol. 49, No. 47, 2002, pp. 1373-1376.
[18] J. Bukh, X. Forns, S. U. Emerson and R. H. Purcell, “Studies of Hepatitis C Virus in Chimpanzees and Their Importance for Vaccine Development,” Intervirology, Vol. 44, No. 2-3, 2001, pp. 132-142. doi:10.1159/000050040
[19] D. G. Bowen and C. M. Walker, “Mutational Escape from CD8+ T cell Immunity: HCV Evolution, from Chimpanzees to Man,” The Journal of Experimental Medicine, Vol. 201, No. 11, 2005, pp. 1709-1714. doi:10.1084/jem.20050808
[20] M. Lechmann and T. J. Liang, “Vaccine Development for Hepatitis C,” Seminars in Liver Disease, Vol. 20, No. 2, 2000, pp. 211-226. doi:10.1055/s-2000-9947
[21] S. Okada, H. Harada, T. Ito, T. Saito and S. Suzu, “Early Development of Human Hematopoietic and Acquired Immune Systems in New Born NOD/Scid/Jak3null Mice Intrahepatic Engrafted with Cord Blood-Derived CD34 + Cells,” International Journal of Hematology, Vol. 88, No. 5, 2008, pp. 476-482. doi:10.1007/s12185-008-0215-z
[22] S. Hattori, K. Ide, H. Nakata, et al., “Potent Activity of a Nucleoside Reverse Transcriptase Inhibitor, 4’-ethynyl- 2-fluoro-2’-deoxyadenosine, against Human Immunodeficiency Virus Type 1 Infection in a Model Using Human Peripheral Blood Mononuclear Cell-Transplanted NOD/ SCID Janus Kinase 3 Knockout Mice.” Antimicrob Agents Chemother, Vol. 53, No. 9, 2009, pp. 3887-3893. doi:10.1128/AAC.00270-09
[23] F. Kobune, H. Sakata and A. Sugiura, “Marmoset Lymphoblastoid Cells as a Sensitive Host for Isolation of Measles Virus,” Journal of Virology, Vol. 64, 1990, pp. 700-705.
[24] K. Tsukiyama-Kohara, S. Tone, I. Maruyama, et al., “Activation of the CKI-CDK-Rb-E2F Pathway in Full Genome Hepatitis C Virus-Expressing Cells,” The Journal of Biological Chemistry, Vol. 279, No. 15, 2004, pp. 14531-14541. doi:10.1074/jbc.M312822200
[25] M. Satoh, M. Saito, K. Tanaka, et al., “Evaluation of a Recombinant Measles Virus Expressing Hepatitis C Virus Envelope Proteins by Infection of Human PBL-NOD/ Scid/Jak3null Mouse,” Comparative Immunology, Microbiology and Infectious Diseases, Vol. 33, No. 6, 2010,pp. e81-e88. doi:10.1016/j.cimid.2010.02.006
[26] M. Yoneda, R. Miura, T. Barrett, K. Tsukiyama-Kohara and C. Kai, “Rinderpest Virus Phosphoprotein Gene is a Major Determinant of Species-Specific Pathogenicity,” Journal of Virology, Vol. 78, No. 12, 2004, pp. 6676-6681. doi:10.1128/JVI.78.12.6676-6681.2004
[27] A. Op De Beeck, L. Cocquerel and J. Dubuisson, “Biogenesis of Hepatitis C Virus Envelope Glycoproteins,” Journal of General Virology, Vol. 82, No. 11, 2001, pp. 2589-2595.
[28] E. Falkowska, F. Kajumo, E. Garcia, J. Reinus and T. Dragic, “Hepatitis C Virus Envelope Glycoprotein E2 Glycans Modulate Entry, CD81 Binding, and Neutralization,” Journal of Virology, Vol. 81, No. 15, 2007, pp. 8072-8079. doi:10.1128/JVI.00459-07
[29] F. Helle, A. Goffard, V. Morel, et al., “The Neutralizing Activity of Anti-hepatitis C Virus Antibodies is Modulated by Specific Glycans on the E2 Envelope Protein,” Journal of Virology, Vol. 81, No. 15, 2007, pp. 8101-8111. doi:10.1128/JVI.00127-07
[30] P. Jackson, J. Petrik, G. J. Alexander, G. Pearson and J. P. Allain, “Reactivity of Synthetic Peptides Representing Selected Sections of Hepatitis C Virus Core and Envelope Proteins with a Panel of Hepatitis C Virus-Seropositive Human Plasma,” Journal of Medical Virology, Vol. 51, No. 1, 1997, pp. 67-79. doi:10.1002/(SICI)1096-9071(199701)51:1<67::AID-JMV11>3.0.CO;2-1
[31] J. H. Hoofnagle, “Course and Outcome of Hepatitis C,” Hepatology, Vol. 36, No. 5, 2002, pp. S21-S29. doi:10.1002/hep.1840360704

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.