Share This Article:

Segmentation of MS lesions using entropy-based EM algorithm and Markov random fields

Abstract Full-Text HTML Download Download as PDF (Size:1871KB) PP. 552-561
DOI: 10.4236/jbise.2011.48071    3,563 Downloads   7,021 Views   Citations

ABSTRACT

This paper presents an approach for fully automatic segmentation of MS lesions in fluid attenuated inversion recovery (FLAIR) Magnetic Resonance (MR) images. The proposed method estimates a gaussian mixture model with three kernels as cerebrospinal fluid (CSF), normal tissue and Multiple Sclerosis lesions. To estimate this model, an automatic Entropy based EM algorithm is used to find the best estimated Model. Then, Markov random field (MRF) model and EM algorithm are utilized to obtain and upgrade the class conditional probability density function and the apriori probability of each class. After estimation of Model parameters and apriori probability, brain tissues are classified using bayesian classification. To evaluate the result of the proposed method, similarity criteria of different slices related to 20 MS patients are calculated and compared with other methods which include manual segmentation. Also, volume of segmented lesions are computed and compared with gold standard using correlation coefficient. The proposed method has better performance in comparison with previous works which are reported here.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Bijar, A. , Khanloo, M. , Benavent, A. and Khayati, R. (2011) Segmentation of MS lesions using entropy-based EM algorithm and Markov random fields. Journal of Biomedical Science and Engineering, 4, 552-561. doi: 10.4236/jbise.2011.48071.

References

[1] Kurtzke, J.F. (1983) Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33, 1444-1452.
[2] Rasoul, K., Mansur, V., Farzad, T., Massood Nabavi., S. (2008) Fully automatic segmentation of multiple sclero-sis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Com-puters in Biology and Medicine, 38, 379-390. doi:10.1016/j.compbiomed.2007.12.005
[3] Polman, C.H., Reingold, S.C., Edan, G., Fillippi, M., Hartung, HP. and Kappos, L. (2005) Diagnostic criteria for MS 2005 revisions to the MC Donald criteria. Annals of Neurology, 58, 840-846. doi:10.1002/ana.20703
[4] Edelman, R.R., Hesselink, J.R. and Zlatkin, M.B. (2006) Clinical magnetic resonance imaging. 3rd Edition, Saun-ders, Philadelphia, 1571-1615.
[5] Anbeek, P., Vincken, K.L., van Osch, M.J.P., Bisschops, R.H.C. and Van der Grond, J. (2004) Probabilistic seg-mentation of white matter lesions in MR imaging, NeuroImage, 21, 1037-1044. doi:10.1016/j.neuroimage.2003.10.012
[6] Khayati, R. (2006) Quantification of multiple sclerosis lesions based on fractal analysis. PhD Thesis, Technical Report No. 1: Fully automatic object oriented brain seg-mentation in MRI. Amirkabir University of Technology, Tehran.
[7] Duda, R.O., Hart, P.E. and Stork, D.G. (2001) Pattern classification. 2nd Edition, Wiley, New York.
[8] Bernardo, J.M. and Smith, A.F.M. (1994) Bayesian the-ory. Wiley, New York. doi:10.1002/9780470316870
[9] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1997) Maximun likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Soceity B, 39, 1-38. doi:10.1.1.133.4884
[10] Shannon, C. (1948) A mathematical theory of communi-cation. Bell System Technical Journal, 27, 379-423.
[11] Cover, T.M. and Thomas, J.A. (1991) Elements of infor-mation theory. Wiley & Sons, New York. doi:10.1002/0471200611
[12] Renyi, A. (1961) On measures of entropy and informa-tion. University California Press, Berkeley, 547-561.
[13] Leonenko, N., Pronzato, L. and Savani, V. (2008) A class of Rényi information estimators for multidimensional densities. Annals of Statistics, 36, 2153-2182. doi:10.1214/07-AOS539
[14] Kozachenko, L. and Leonenko, N. (1987) On statistical estimation of entropy of a random vector. Problems In-formation Transmission, 23, 95101.
[15] Jones, M. and Sibson, R. (1987) What is projection pur-suit. Journal of the Royal Statistical Society: Series A, 150, 136. http://www.jstor.org/stable/2981662
[16] Benavent, A.P. Ruiz, F.E. and Sáez, J.M. (2009) Learning Gaussian mixture models with entropy-based criteria. IEEE Transactions on Neural Networks, 20, 1756-1771. doi:10.1109/TNN.2009.2030190
[17] Richardson, S. and Green, P. (1991) On Bayesian analy-sis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society: Series B, 59, 731-792. doi:10.1111/1467-9868.00095
[18] Dellaportas, P. and Papageorgiou, I. (2006) Multivariate mixtures of normals with unknown number of compo-nents. Statistics and Computing, 16, 57-68. doi:10.1007/s11222-006-5338-6
[19] Mitchell, T.M. (1997) Machine Learning. McGraw-Hill, Boston. doi:10.1036/0070428077
[20] Li, S.Z. (2001) Markov random field modeling in image analysis. Springer, Tokyo.
[21] Held, K., Kops, E.R., Krause, B.J., Wells, W.M., Kikinis, R. and Mller-Grtner, H.W. (1997) Markov random field segmentation of brain MR images. IEEE Transactions on Medical Imaging, 16, 878-886. doi:10.1109/42.650883
[22] Geman, D., Geman, S., Graffigne, C. and Dong, P. (1990) Boundary detection by constrained optimization, IEEE Transactions on Pattern Analysis and Machine Intelli-gence, PAMI-12, 609-628. doi:10.1109/34.56204
[23] Therrien, C.W. (1989) Decision, estimation, and classifi-cation. Wiley, New York.
[24] Nett, J.M. (2001) The study of MS using MRI, image processing, and visualization. Master’s Thesis, Univer-sity of Louisville, Louisville.
[25] Zijdenbos, A.P., Dawant, B.M., Margolin, R.A. and Palmer, A.C. (1994) Morphometric analysis of white matter lesions in MR images: Method and validation. IEEE Transactions on Medical Imaging, 13, 716-724. doi:10.1109/42.363096
[26] Stokking, R., Vincken, K.L. and Viergever, M.A. (2000) Automatic morphologybased brain segmentation (MBRASE) from MRI-T1 data. NeuroImage, 12, 726-738. doi:10.1006/nimg.2000.0661
[27] Johnston, B., Atkins, M.S., Mackiewich, B. and Ander-son, M. (1996) Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Transac-tions on Medical Imaging, 15, 154-169. doi:10.1109/42.491417
[28] Boudraa, A.O., Dehakb, S.M.R., Zhu, Y.M., Pachai, C., Bao, Y.G. and Grimaud, J. (2000) Automated segmenta-tion of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering. Computers in Biology and Medicine, 30, 23-40. doi:10.1016/S0010-4825(99)00019-0
[29] Leemput, K.V., Maes, F., Vandermeulen, D., Colchester, A. and Suetens, P. (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging, 20, 677-688. doi:10.1109/42.938237
[30] Zijdenbos, A.P., Forghani, R. and Evans. A.C. (2002) Automatic pipeline analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis. IEEE Transac-tions on Medical Imaging, 21, 1280-1291. doi:10.1109/TMI.2002.806283
[31] Bartko, J.J. (1991) Measurement and reliability: statisti-cal thinking considerations. Schizophrenia Bulletin, 17, 483-489. doi:10.1093/schbul/17.3.483

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.