Share This Article:

Application of He’s Variational Iteration Method and Adomian Decomposition Method to Solution for the Fifth Order Caudrey-Dodd-Gibbon (CDG) Equation

Abstract Full-Text HTML Download Download as PDF (Size:1654KB) PP. 953-958
DOI: 10.4236/am.2011.28131    5,757 Downloads   10,610 Views   Citations
Author(s)    Leave a comment

ABSTRACT

In this work we use the He’s variational iteration method and Adomian decomposition method to solution N-soliton solutions for the fifth order Caudrey-Dodd-Gibbon (CDG) Equation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Safari, "Application of He’s Variational Iteration Method and Adomian Decomposition Method to Solution for the Fifth Order Caudrey-Dodd-Gibbon (CDG) Equation," Applied Mathematics, Vol. 2 No. 8, 2011, pp. 953-958. doi: 10.4236/am.2011.28131.

References

[1] R. Hirota, “The Direct Method in Soliton Theory,” Cambridge University Press, Cambridge, 2004.
[2] R. Hirota, “Exact Solutions of the Korteweg-de Vries Equation for Multiple Collisions of Solitons,” Physical Review Letters, Vol. 27, No. 18, 1971, pp. 1192-1194. doi:10.1103/PhysRevLett.27.1192
[3] R. Hirota, “Exact Solutions of the Modified Korteweg-de Vries Equation for Multiple Collisions of Solitons,” Journal of the Physical Society of Japan, Vol. 33, No. 5, 1972, pp. 1456-1458. doi:10.1143/JPSJ.33.1456
[4] R. Hirota, “Exact Solutions of the Sine-Gordon Equation for Multiple Collisions of Solitons,” Journal of the Physical Society of Japan, Vol. 33, No. 5, 1972, pp. 1459- 1463. doi:10.1143/JPSJ.33.1459
[5] J. Hietarinta, “A Search for Bilinear Equations Passing Hirota’s Three-Soliton Condition. I. KdV-Type Bilinear Equations,” Journal of Mathematical Physics, Vol. 28, No. 8, 1987, pp. 1732-1742. doi:10.1063/1.527815
[6] J. Hietarinta, “A Search for Bilinear Equations Passing Hirota’s Three-Soliton Condition. II. mKdV-Type Bilinear Equations,” Journal of Mathematical Physics, Vol. 28, No. 9, 1987, pp. 2094-2101. doi:10.1063/1.527421
[7] W. Hereman and W. Zhaung, “Symbolic Software for Soliton Theory,” Acta Applicandae Mathematicae, Physics Letters A, Vol. 76, 1980, pp. 95-96.
[8] W. Hereman and A. Nuseir, “Symbolic Methods to Construct Exact Solutions of Nonlinear Partial Differential Equations,” Mathematics and Computers in Simulation, Vol. 43, 1997, pp. 13-27. doi:10.1016/S0378-4754(96)00053-5
[9] J. Weiss, “On Classes of Integrable Systems and the Painleve′ Property,” Journal of Mathematical Physics, Vol. 25, No. 1, 1984, pp. 13-24. doi:10.1063/1.526009
[10] P. J. Caudrey, R. K. Dodd and J. D. Gibbon, “A New Heirarchy of Korteweg-de Vries Equations,” Proceedings of the Royal Society A, Vol. 351, 1976, pp. 407-422. doi:10.1098/rspa.1976.0149
[11] R. K. Dodd and J. D. Gibbon, “The Prolongation Structure of a Higher Order Korteweg-de Vries Equations,” Proceedings of the Royal Society A, Vol. 358, 1977, pp. 287-300.
[12] W. Malfliet, “The Tanh Method: A Tool for Solving Certain Classes of Nonlinear Evolution and Wave Equations,” Journal of Computational and Applied Mathematics, Vol. 164-165, 2004, pp. 529-541. doi:10.1016/S0377-0427(03)00645-9
[13] W. Malfliet, “Solitary Wave Solutions of Nonlinear Wave Equations,” American Journal of Physics, Vol. 60, No. 7, 1992, pp. 650-654. doi:10.1119/1.17120
[14] W. Malfliet and W. Hereman, “The Tanh Method: I. Exact Solutions of Nonlinear Evolution and Wave Equations,” Physica Scripta, Vol. 54, 1996, pp. 563-568. doi:10.1088/0031-8949/54/6/003
[15] W. Malfliet and W. Hereman, “The Tanh Method: II. Perturbation Technique for Conservative Systems,” Phy- sica Scripta, Vol. 54, 1996, pp. 569-575. doi:10.1088/0031-8949/54/6/004
[16] A. M. Wazwaz, “The Tanh Method for Travelling Wave Solutions of Nonlinear Equations,” Applied Mathematics and Computation, Vol. 154, No. 3, 2004, pp. 713-723. doi:10.1016/S0096-3003(03)00745-8
[17] A. M. Wazwaz, “Partial Differential Equations: Methods and Applications,” Balkema Publishers, The Netherlands, 2002.
[18] A. M. Wazwaz, “The Extended Tanh Method for New Solitons Solutions for Many Forms of the Fifth-Order KdV Equations,” Applied Mathematics and Computation, Vol. 184, No. 2, 2007, pp. 1002-1014. doi:10.1016/j.amc.2006.07.002
[19] A. M. Wazwaz, “The Tanh-Coth Method for Solitons and Kink Solutions for Nonlinear Parabolic Equations,” Applied Mathematics and Computation, Vol. 188, 2007, pp. 1467-1475. doi:10.1016/j.amc.2006.11.013

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.