Share This Article:

First-Principles Investigation of the Effect of M-Doped (M = Zr, Hf) TiCoSb Half-Heusler Thermoelectric Material

Abstract Full-Text HTML XML Download Download as PDF (Size:2441KB) PP. 78-86
DOI: 10.4236/msce.2015.312012    2,671 Downloads   3,211 Views   Citations

ABSTRACT

The M-doping (M = Zr, Hf) effects on the electronic structures and thermoelectric performance of TiCoSb were studied by first-principles calculations. The band structure analysis shows that substituting Ti with M does not change the band structures of these systems significantly. Most of the M-doped systems have a lower band gap value than that of TiCoSb; especially Ti0.5Zr0.5CoSb has the lowest energy band gap value of 0.971 eV. Besides, the amplitudes of the density of states in the region of the valence bands for M-doped systems show a similar but slightly higher value than TiCoSb. Those suggest that these compounds could have better thermoelectric performance than TiCoSb. The phonon dispersion relations show that the larger mass of Zr/Hf with respect to Ti lowers the optical modes and induces mixing with the acoustic branches. Our calculations offer a valuable insight on how to characterize complicated crystal structures of thermoelectric materials and optimize the material composition.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sun, G. , Li, Y. , Zhao, X. , Mi, Y. and Wang, L. (2015) First-Principles Investigation of the Effect of M-Doped (M = Zr, Hf) TiCoSb Half-Heusler Thermoelectric Material. Journal of Materials Science and Chemical Engineering, 3, 78-86. doi: 10.4236/msce.2015.312012.

References

[1] Zou, D.F., Xie, S.H., Liu, Y.Y., Lin, J.G. and Li, J.Y. (2013) Electronic Structure and Thermoelectric Properties of Half-Heusler Zr0.5Hf0.5NiSn by First-Principles Calculations. Journal of Applied Physics, 113, Article ID: 193705.
http://dx.doi.org/10.1063/1.4804939
[2] Ding, G.Q., Gao, G.Y. and Yao, K.L. (2014) Thermoelectric Performance of Half-Heusler Compounds MYSb (M = Ni, Pd, Pt). Journal of Physics D: Applied Physics, 47, Article ID: 385305.
http://dx.doi.org/10.1088/0022-3727/47/38/385305
[3] Geng, H.Y., Meng, X.F., Zhang, H. and Zhang, J. (2014) Lattice Thermal Conductivity of Nanograined Half-Heusler Solid Solutions. Applied Physics Letters, 104, Article ID: 202104.
http://dx.doi.org/10.1063/1.4879248
[4] Culp, S.R., Poon, S.J., Hickman, N., Tritt, T.M. and Blumm, J. (2006) Effect of Substitutions on the Thermoelectric Figure of Merit of Half-Heusler Phases at 800℃. Applied Physics Letters, 88, Article ID: 042106.
http://dx.doi.org/10.1063/1.2168019
[5] Bhattacharya, S., Skove, M., Russell, M., Tritt, T., Xia, Y., Ponnambalam, V., Poon, S. and Thadhani, N. (2008) Effect of Boundary Scattering on the Thermal Conductivity of TiNiSn-Based Half-Heusler Alloys. Physical Review B, 77, Article ID: 184203.
http://dx.doi.org/10.1103/physrevb.77.184203
[6] Ouardi, S., Fecher, G.H., Felser, C., Blum, C.G.F., Bombor, D., Hess, C., Wurmehl, S., Büchner, B. and Ikenaga, E. (2011) Transport and Thermal Properties of Single- and Polycrystalline NiZr0.5Hf0.5Sn. Applied Physics Letters, 99, Article ID: 152112.
http://dx.doi.org/10.1063/1.3651484
[7] Liu, C.R. and Li, J.B. (2011) Thermoelectric Properties of ZnO Nanowires: A First Principle Research. Physics Letters A, 375, 2878-2881.
http://dx.doi.org/10.1016/j.physleta.2011.06.024
[8] Kimura, Y., Ueno, H. and Mishima, Y. (2009) Thermoelectric Properties of Directionally Solidified Half-Heusler (M0.5a, M0.5b)NiSn (Ma, Mb = Hf, Zr, Ti) Alloys. Journal of Electronic Materials, 38, 934-939.
http://dx.doi.org/10.1007/s11664-009-0710-x
[9] Xie, H.H., Wang, H., Pei, Y.Z., Fu, C.G., Liu, X.H., Snyder, G.J., Zhao, X.B. and Zhou, T.J. (2013) Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Half-Heusler Thermoelectric Materials. Advanced Functional Materials, 23, 5123-5130.
http://dx.doi.org/10.1002/adfm.201300663
[10] Uher, C., Yang, J., Hu, S., Morelli, D.T. and Meisner, G.P. (1999) Transport Properties of Pure and Doped MNiSn (M = Zr, Hf). Physical Review B, 59, 8615.
http://dx.doi.org/10.1103/PhysRevB.59.8615
[11] Hohl, H., Ramirez, A.P., Goldmann, C., Ernst, G., Wolfing, B. and Bucher, E. (1999) Efficient Dopants for ZrNiSn-Based Thermoelectric Materials. Journal of Physics: Condensed Matter, 11, 1697-1710.
http://dx.doi.org/10.1088/0953-8984/11/7/004
[12] Xie, W.J., Jin, Q. and Tang, X.F. (2008) The Preparation and Thermoelectric Properties of Ti0.5Zr0.25Hf0.25Co1–xNixSb Half-Heusler Compounds. Journal of Applied Physics, 103, Article ID: 043711.
http://dx.doi.org/10.1063/1.2885113
[13] Huang, X.Y., Xu, Z. and Chen, L.D. (2004) The Thermoelectric Performance of ZrNiSn/ZrO2 Composites. Solid State Communication, 130, 181-185.
http://dx.doi.org/10.1016/j.ssc.2004.02.001
[14] Sakurada, S. and Shutoh, N. (2005) Effect of Ti Substitution on the Thermoelectric Properties of (Zr,Hf)NiSn Half-Heusler Compounds. Applied Physics Letters, 86, Article ID: 082105.
http://dx.doi.org/10.1063/1.1868063
[15] Lindsay, L., Broido, D.A. and Reinecke, T.L. (2013) Ab initio Thermal Transport in Compound Semiconductors. Physical Review B, 87, Article ID: 165201.
http://dx.doi.org/10.1103/PhysRevB.87.165201
[16] Nomura, M., Nakagawa, J., Kage, Y., Maire, J., Moser, D. and Paul, O. (2015) Thermal Phonon Transport in Silicon Nanowires and Two-Dimensional Phononic Crystal Nanostructures. Applied Physics Letters, 106, Article ID: 143102.
http://dx.doi.org/10.1063/1.4917036
[17] Yang, J., Meisner, G.P. and Chen, L.D. (2004) Strain Field Fluctuation Effects on Lattice Thermal Conductivity of ZrNiSn-Based Thermoelectric Compounds. Applied Physics Letters, 85, 1140.
http://dx.doi.org/10.1063/1.1783022
[18] Tian, Z.T., Garg, J., Esfarjani, K., Shiga, T., Shiomi, J. and Chen, G. (2012) Phonon Conduction in PbSe, PbTe, and PbTe1–xSex from First-Principles Calculations. Physical Review B, 85, Article ID: 184303.
http://dx.doi.org/10.1103/PhysRevB.85.184303
[19] Sekimoto, T., Kurosaki, K., Muta, H. and Yamanaka, S. (2006) Thermoelectric and Thermophysical Properties of ErPdX (X=Sb and Bi) Half-Heusler Compounds. Journal of Applied Physics, 99, Article ID: 103701.
http://dx.doi.org/10.1063/1.2196109
[20] Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computer Materials Science, 6, 15-50.
http://dx.doi.org/10.1016/0927-0256(96)00008-0
[21] Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, Article ID: 011169.
http://dx.doi.org/10.1103/PhysRevB.54.11169
[22] Kresse, G. and Hafner, J. (1993) Ab initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558-561.
http://dx.doi.org/10.1103/PhysRevB.47.558
[23] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868.
http://dx.doi.org/10.1103/PhysRevLett.77.3865
[24] Wang, L.L., Miao, L., Wang, Z.Y., Wei, W., Xiong, R., Liu, H.J., Shi, J. and Tang, X.F. (2009) Thermoelectric Performance of Half-Heusler Compounds TiNiSn and TiCoSb. Journal of Applied Physics, 105, Article ID: 013709.
http://dx.doi.org/10.1063/1.3056384
[25] Sekimoto, T., Kurosaki, K., Muta, H. and Yamanaka, S. (2005) Thermoelectric Properties of (Ti,Zr,Hf)CoSb Type Half-Heusler Compounds. Materials Transactions, 46, 1481-1484.
http://dx.doi.org/10.2320/matertrans.46.1481
[26] Yang, J., Li, H.M., Wu, T., Zhang, W.Q., Chen, L.D. and Yang, J.H. (2008) Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties. Advanced Functional Materials, 18, 2880-2888.
http://dx.doi.org/10.1002/adfm.200701369
[27] Khein, A., Singh, D.J. and Umrigar, C.J. (1995) All-Electron Study of Gradient Corrections to the Local-Density Functional in Metallic Systems. Physical Review B, 51, 4105-4109.
http://dx.doi.org/10.1103/PhysRevB.51.4105
[28] Song, Y. and Guo, A.X. (2006) Electronic Structure, Stability and Bonding of the Li-N-H Hydrogen Storage System. Physical Review B, 74, Article ID: 195120.
http://dx.doi.org/10.1103/PhysRevB.74.195120
[29] Lee, M.S., Poudeu, F.P. and Mahanti, S.D. (2011) Electronic Structure and Thermoelectric Properties of Sb-Based Semiconducting Half-Heusler Compounds. Physical Review B, 83, Article ID: 085204.
http://dx.doi.org/10.1103/PhysRevB.83.085204
[30] Ding, G.Q., Gao, G.Y. and Yao, K.L. (2015) Examining the Thermal Conductivity of the Half-Heusler Alloy TiNiSn by First-Principles Calculations. Journal of Physics D: Applied Physics, 48, Article ID: 235302.
http://dx.doi.org/10.1088/0022-3727/48/23/235302
[31] Shiomi, J., Esfarjani, K. and Chen, G. (2011) Thermal Conductivity of Half-Heusler Compounds from First-Principles Calculations. Physical Review B, 84, Article ID: 104302.
http://dx.doi.org/10.1103/PhysRevB.84.104302
[32] Togo, A., Oba, F. and Tanaka, I. (2008) First-Principles Calculations of the Ferroelastic Transition between Rutile-Type and CaCl2-Type SiO2 at High Pressures. Physical Review B, 78, Article ID: 134106.
http://dx.doi.org/10.1103/PhysRevB.78.134106
[33] Xia, Y., Bhattacharya, S., Ponnambalam, V., Pope, A.L., Poon, S.J. and Tritt, T.M. (2000) Thermoelectric Properties of Semimetallic (Zr, Hf)CoSb Half-Heusler Phases. Journal of Applied Physics, 88, 1952.
http://dx.doi.org/10.1063/1.1305829
[34] Qiu, P.F., Huang, X.Y., Chen, X.H. and Chen, L.D. (2009) Enhanced Thermoelectric Performance by the Combination of Alloying and Doping in TiCoSb-Based Half-Heusler Compounds. Journal of Applied Physics, 106, Article ID: 103703.
http://dx.doi.org/10.1063/1.3238363

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.