Share This Article:

SspB Peptide Assay Reveals Saliva-Mediated Porphyromonas gingivalis Attachment

Abstract Full-Text HTML XML Download Download as PDF (Size:1201KB) PP. 259-267
DOI: 10.4236/ojst.2015.511032    3,359 Downloads   3,681 Views   Citations

ABSTRACT

Background: Porphyromonas gingivalis is a major periodontal pathogen that binds efficiently to Streptococcus gordonii, which in turn binds to salivary agglutinin (gp340). The SspB of S. gordonii appears to mediate this association. We previously reported that the strepto-coccal SspB peptide analog, designated SspB (390-T400K-402), showed high binding activity with saliva. To understand the three-way interaction among S. gordonii, P. gingivalis and salivary gp340 as a unit, we established a peptide binding assay using SspB (390-T400K-402). Methods: The binding activity of the SspB (390-T400K-402) to P. gingivalis was detected by ELISA. Ninety-six well plates were coated with whole bacterial cell (P. gingivalis strains ATCC 33277, and W83; S. gordonii DL1) in Na2CO3 coating buffer. After blocking, bacterial cells were incubated with saliva or salivary agglutinin peptide (SRCRP2). Biotinylated SspB (390-T400K-402) was applied and incubated with 1:1000 streptoavidin-conjugated alkaline phosphatase. After development, A405 was recorded. Results: P. gingivalis 33277 showed the highest binding activity of the tested bacteria, whereas P. gingivalis W83, which was deficient in Mfa1 fimbriae, exhibited poor binding activity, as did S. gordonii. The binding of SspB (390-T400K-402) peptide in saliva- or SRCRP2-treated P. gingivalis was significantly higher than that in non-treated cells. Conclusion: The SspB (390-T400K-402) peptide binding assay revealed that initial attachment of P. gingivalis to the substrata of S. gordonii may require gp340-mediated SspB-Mfa1 interactions. The assay is available to assess the relationships among SspB, Mfa1 and salivary gp340 as a unit.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ito, T. , Senpuku, H. , Ichinosawa, T. , Ikematsu-Ito, N. , Kimura, N. and Shimizu, T. (2015) SspB Peptide Assay Reveals Saliva-Mediated Porphyromonas gingivalis Attachment. Open Journal of Stomatology, 5, 259-267. doi: 10.4236/ojst.2015.511032.

References

[1] Scannapieco, F.A. (1994) Saliva-Bacterium Interactions in Oral Microbial Ecology. Critical Reviews in Oral Biology & Medicine, 5, 203-248.
[2] Kolenbrander, P.E. and London, J. (1993) Adhere Today, Here Tomorrow: Oral Bacterial Adherence. Journal of Bacteriology, 175, 3247-3252.
[3] Marsh, P.D. (1994) Microbial Ecology of Dental Plaque and Its Significance in Health and Disease. Advances in Dental Research, 8, 263-271.
[4] Bikker, F.J., Ligtenberg, A.J., Nazmi, K., Veerman, E.C., van’t Hof, W., Bolscher, J.G., Poustka, A., Amerongen, A.V.N. and Mollenhauer, J. (2002) Identification of the Bacteria-Binding Peptide Domain on Salivary Agglutinin (gp-340/DMBT1), a Member of the Scavenger Receptor Cysteine-Rich Superfamily. Journal of Biological Chemistry, 277, 32109-32115.
http://dx.doi.org/10.1074/jbc.M203788200
[5] Gibbons, R.J. (1996) Role of Adhesion in Microbial Colonization of Host Tissues: A Contribution of Oral Microbiology. Journal of Dental Research, 75, 866-870.
http://dx.doi.org/10.1177/00220345960750030201
[6] Brady, L.J., Maddocks, S.E., Larson, M.R., Forsgren, N., Persson, K., Deivanayagam, C.C. and Jenkinson, H.F. (2010) The Changing Faces of Streptococcus Antigen I/II Polypeptide Family Adhesins. Molecular Microbiology, 77, 276- 286.
http://dx.doi.org/10.1111/j.1365-2958.2010.07212.x
[7] Park, Y., Simionato, M.R., Sekiya, K., Murakami, Y., James, D., Chen, W., Hackett, M., Yoshimura, F., Demuth, D.R. and Lamont, R.J. (2005) Short Fimbriae of Porphyromonas gingivalis and Their Role in Coadhesion with Streptococcus gordonii. Infection and Immunity, 73, 3983-3989.
http://dx.doi.org/10.1128/IAI.73.7.3983-3989.2005
[8] Rosan, B. and Lamont, R.J. (2000) Dental Plaque Formation. Microbes and Infection, 2, 1599-1607.
http://dx.doi.org/10.1016/S1286-4579(00)01316-2
[9] Chung, W.O., Demuth, D.R. and Lamont, R.J. (2000) Identification of a Porphyromonas gingivalis Receptor for the Streptococcus gordonii SspB Protein. Infection and Immunity, 68, 6758-6762.
http://dx.doi.org/10.1128/IAI.68.12.6758-6762.2000
[10] Brooks, W., Demuth, D.R., Gil, S. and Lamont, R.J. (1997) Identification of a Streptococcus gordonii SspB Domain That Mediates Adhesion to Porphyromonas gingivalis. Infection and Immunnity, 65, 3753-3758.
[11] Daep, C.A., James, D.M., Lamont, R.J. and Demuth, D.R. (2006) Structural Characterization of Peptide-Mediated Inhibition of Porphyromonas gingivalis Biofilm Formation. Infection and Immunity, 76, 5756-5762.
http://dx.doi.org/10.1128/IAI.00813-06
[12] Daep, C.A., Novak, E.A., Lamont, R.J. and Demuth, D.R. (2011) Structural Dissection and in Vivo Effectiveness of a Peptide Inhibitor of Porphyromonas gingivalis Adherence to Streptococcus gordonii. Infection and Immunity, 79, 67- 74.
http://dx.doi.org/10.1128/IAI.00361-10
[13] Hamada, T., Kawashima, M., Watanabe, H., Tagami, J. and Senpuku, H. (2004) Molecular Interactions of Surface Protein Peptides of Streptococcus gordonii with Human Salivary Components. Infection and Immunity, 72, 4819-4826.
http://dx.doi.org/10.1128/IAI.72.8.4819-4826.2004
[14] Okuda, K., Hanada, N., Usui, Y., Takeuchi, H., Koba, H., Nakao, R., Watanabe, H. and Senpuku, H. (2010) Inhibition of Streptococcus mutans Ad-herence and Biofilm Formation Using Analogues of the SspB Peptide. Archives of Oral Biology, 55, 754-762.
http://dx.doi.org/10.1016/j.archoralbio.2010.06.014
[15] Koba, H., Okuda, K., Watanabe, H., Tagami, J. and Senpuku, H. (2009) Role of Lysine in Interaction between Surface Protein Peptides of Streptococcus gordonii and Agglutinin Peptide. Oral Microbiology and Immunology, 24,162-169.
http://dx.doi.org/10.1111/j.1399-302X.2008.00490.x
[16] Loimaranta, V., Jakubovics, N.S., Hytonen, J., Finne, J., Jenkinson, H.F. and Stromberg, N. (2005) Fluid- or Surface- Phase Human Salivary Scavenger Protein gp340 Exposes Different Bacterial Recognition Properties. Infection and Immunity, 73, 2245-2252.
http://dx.doi.org/10.1128/IAI.73.4.2245-2252.2005
[17] Amano, A., Sojar, H.T., Lee, J.Y., Sharma, A., Levine, M.J. and Genco, R.J. (1994) Salivary Receptors for Recombinant Fimbrillin of Porphyromonas gingivalis. Infection and Immunity, 62, 3372-3380.
[18] Amano, A., Sharma, A., Lee, J.Y., Sojar, H.T., Raj, P.A. and Genco, R.J. (1996) Structural Domains of Porphyromonas gingivalis Recombinant Fimbrillin That Mediate Binding to Salivary Proline-Rich Protein and Statherin. Infection and Immunity, 64, 1631-1637.
[19] Lamont, R.J. and Jenkinson, H.F. (2000) Subgingival Colonization by Porphy-romonas gingivalis. Oral Microbiology and Immunology, 15, 341-349.
http://dx.doi.org/10.1034/j.1399-302x.2000.150601.x
[20] Oho, T., Bikker, F.J., Nieuw Amerongen, A.V. and Groe-nink, J. (2004) A Peptide Domain of Bovine Milk Lactoferrin Inhibits the Interaction between Streptococcal Surface Protein Antigen and a Salivary Agglutinin Peptide Domain. Infection and Immunity, 72, 6181-6184.
http://dx.doi.org/10.1128/IAI.72.10.6181-6184.2004
[21] Ito, T., Maeda, T. and Senpuku, H. (2012) Roles of Salivary Components in Streptococcus mutans Colonization in a New Animal Model Using NOD/SCID. e2f1-/- Mice. PLoS ONE, 7, e32063.
http://dx.doi.org/10.1371/journal.pone.0032063
[22] Demuth, D.R., Irvine, D.C., Costerton, J.W., Cook, G.S. and Lamont, R.J. (2001) Discrete Protein Determinant Directs the Species-Specific Adherence of Porphyromonas gingivalis to Oral Streptococci. Infection and Immunity, 69, 5736-5741.
http://dx.doi.org/10.1128/IAI.69.9.5736-5741.2001
[23] Amano, A., Nakagawa, I., Okahashi, N. and Hamada, N. (2004) Variations of Porphyromonas gingivalis Fimbriae in Relation to Microbial Pathogenesis. Journal of Periodontal Research, 39, 136-142.
http://dx.doi.org/10.1111/j.1600-0765.2004.00719.x
[24] Hamada, N., Sojar, H.T., Cho, M.I. and Genco, R.J. (1996) Isolation and Characterization of a Minor Fimbria from Porphyromonas gingivalis. Infection and Immunity, 64, 4788-4794.
[25] Lamont, R.J., El-Sabaeny, A., Park, Y., Cook, G.S. and Costerton, J.W. (2002) Role of the Streptococcus gordonii SspB Protein in the Development of Porphyromonas gingivalis Biofilms on Streptococcal Substrates. Microbiology, 148, 1627-1636.
http://dx.doi.org/10.1099/00221287-148-6-1627
[26] Hasegawa, Y., Iwami, J., Sato, K., Park, Y., Nishikawa, K., Atsumi, T., Moriguchi, K., Murakami, Y., Lamont, R.J., Nakamura, H., Ohno, N. and Yoshimura, F. (2009) Anchoring and Length Regulation of Porphyromonas gingivalis Mfa1 Fimbriae by the Downstream Gene Product Mfa2. Microbiology, 155, 3333-3347.
http://dx.doi.org/10.1099/mic.0.028928-0
[27] Lamont, R.J., Demuth, D.R., Davis, C.A., Malamud, D. and Rosan, B. (1991) Salivary-Agglutinin-Mediated Adherence of Streptococcus mutans to Early Plaque Bacteria. Infection and Immunity, 59, 3446-3450.
[28] Kanaguchi, N., Narisawa, N., Ito, T., Kinoshita, Y., Kusumoto, Y., Shinozuka, O. and Senpuku, H. (2012) Effects of Salivary Protein Flow and Indigenous Microorganisms on Initial Colonization of Candida albicans in an in Vivo Model. BMC Oral Health, 12, 36.
http://dx.doi.org/10.1186/1472-6831-12-36
[29] Donley, C.L., Badovinac, R., Sapir, S., Shapira, L., Houri, Y., Kantarci, A., Warbington, M.L., Dibart, S., Van Dyke, T.E., Needleman, H.L., Karimbux, N. and Bimstein, E. (2004) IgG Antibody Levels to Porphyromonas gingivalis and Clinical Measures in Children. Journal of Periodontology, 75, 221-228.
http://dx.doi.org/10.1902/jop.2004.75.2.221

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.