Share This Article:

Numerical Study of the Higgs Mode in the Heisenberg Antiferromagnet on the Square Lattice

Abstract Full-Text HTML XML Download Download as PDF (Size:7267KB) PP. 261-274
DOI: 10.4236/wjcmp.2015.54027    2,745 Downloads   3,064 Views   Citations
Author(s)    Leave a comment

ABSTRACT

The Higgs mode is expected to exist in any system with the spontaneous symmetry breaking of the continuous symmetry. We make numerical study about the Higgs mode in the Heisenberg antiferromagnet on the square lattice by the exact diagonalisation approach. Since the Higgs mode can couple with a pair of the Nambu-Goldstone modes, we calculate the dynamical correlation of the two spin operators, employing the finite temperature Lanczos method. Because the lattice size is severely limited, we make a careful discussion on procedures of finding evidences for the Higgs mode by numerical works. By the discussed procedures, we present numerical results for the dynamical correlation at zero temperature. Then we obtain clear evidences for the Higgs mode of the spin-1/2 Heisenberg antiferromagnet on the square lattice.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Munehisa, T. (2015) Numerical Study of the Higgs Mode in the Heisenberg Antiferromagnet on the Square Lattice. World Journal of Condensed Matter Physics, 5, 261-274. doi: 10.4236/wjcmp.2015.54027.

References

[1] Anderson, P.W. (1984) Basic Notions of Condensed Matter Physics. Benjamin/Cummings, Menlo Park.
[2] Weinberg, S. (1995) The Quantum Theory of Fields. Vol. 2, Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9781139644167
[3] Goldstone, J. (1961) Field Theories with Superconductor Solutions. Nuovo Cimento, 9, 154-164.
http://dx.doi.org/10.1007/BF02812722
[4] Nambu, Y. (1960) Axial Vector Current Conservation in Weak Interactions. Physical Review Letters, 4, 380-382.
http://dx.doi.org/10.1103/PhysRevLett.4.380
[5] Higgs, P.W. (1964) Broken Symmetries, Massive Particles and the Gauge Fields. Physics Letters, 12, 132-133.
http://dx.doi.org/10.1016/0031-9163(64)91136-9
[6] Aad, G., et al. (2012) Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC. Physics Letters B, 716, 1-29.
http://dx.doi.org/10.1016/j.physletb.2012.08.020
[7] Charchyan, S., et al. (2012) Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Physics Letters B, 716, 30-61.
http://dx.doi.org/10.1016/j.physletb.2012.08.021
[8] Hill, C.T. and Simmons, E. (2003) Strong Dynamics and Electroweak Symmetry Breaking. Physics Reports, 381, 235-402.
http://dx.doi.org/10.1016/S0370-1573(03)00140-6
[9] Pekker, D. and Varma, C.M. (2015) Amplitude/Higgs Modes in Condensed Matter Physics. Annual Review of Condensed Matter Physics, 6, 269-297.
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014350
[10] Endres, M., Fukuhara, T., Pekker, D., Cheneau, M., Schaub, P., Gross, C. and Demler, E. (2012) The “Higgs” Amplitude Mode at the Two-Dimensional Superfluid/Mott Insulator Transition. Nature, 487, 454-459.
http://dx.doi.org/10.1038/nature11255
[11] Ruegg, C., Normand, B., Matsumoto, M., Furrer, A., McMorrow, D.F., Kramer, K.W., Gudel, H.-U., Gvasaliya, S.N., Mutka, H. and Boehm, M. (2008) Quantum Magnets under Pressure: Controlling Elementary Excitations in TlCuCl3. Physical Review Letters, 100, Article ID: 205701.
http://dx.doi.org/10.1103/physrevlett.100.205701
[12] Matsumoto, M., Normand, B., Rice, T.M. and Sigrist, M. (2004) Field- and Pressure-Induced Magnetic Quantum Phase Transitions in TlCuCl3. Physical Review B, 69, Article ID: 054423.
http://dx.doi.org/10.1103/PhysRevB.69.054423
[13] Matsunaga, R., Hamada, Y., Makise, K., Uzawa, Y., Terai, H., Wang, Z. and Shimano, R. (2013) Higgs Amplitude Mode in the BCS Superconductors Nb1-xTixN Induced by Terahertz Pulse Excitation. Physical Review Letters, 111, Article ID: 057002.
http://dx.doi.org/10.1103/PhysRevLett.111.057002
[14] Measson, M.-A., Gallais, Y., Cazayous, M., Clair, B., Rodiere, P., Cario, L. and Sacuto, A. (2014) Amplitude Higgs mode in the 2H-NbSe2 Superconductor. Physical Review B, 89, Article ID: 060503.
http://dx.doi.org/10.1103/PhysRevB.89.060503
[15] Podolsky, D., Auerbach, A. and Arovas, D. (2011) Visibility of the Amplitude (Higgs) Mode in Condensed Matter. Physical Review B, 84, Article ID: 174522.
http://dx.doi.org/10.1103/physrevb.84.174522
[16] Barlas, Y. and Varma, C.M. (2013) Amplitude or Higgs Modes in D-Wave Superconductors. Physical Review B, 87, Article ID: 054503.
http://dx.doi.org/10.1103/physrevb.87.054503
[17] Tsuchiya, S., Ganesh, R. and Nikuni, T. (2013) Higgs Mode in a Superfluid of Dirac Fermions. Physical Review B, 88, Article ID: 014527.
http://dx.doi.org/10.1103/physrevb.88.014527
[18] Gazit, S., Podolsky, D., Auerbach, A. and Arovas, D. (2013) Dynamics and Conductivity near Quantum Criticality. Physical Review B, 88, Article ID: 235108.
http://dx.doi.org/10.1103/physrevb.88.235108
[19] Rancon, A. and Dupuis, N. (2014) Higgs Amplitude Mode in the Vicinity of a (2 + 1)-Dimensional Quantum Critical Point. Physical Review B, 89, Article ID: 180501.
http://dx.doi.org/10.1103/PhysRevB.89.180501
[20] Gazit, S., Podolsky, D. and Auerbach, A. (2013) Fate of the Higgs Mode near Quantum Criticality. Physical Review Letters, 110, Article ID: 140401.
http://dx.doi.org/10.1103/physrevlett.110.140401
[21] Richter, J., Schulenburg, J. and Honecker, A. (2004) Quantum Magnetism. In: Schollwock, U., Richter, J., Farnell, D.J.J. and Bishop, R.F., Eds., Lecture Note in Physics, Volume 645, Springer-Verlag, Berlin Heidelberg, 85-153.
[22] Auerbach. A. (1994) Interacting Electrons and Quantum Magnetism. Springer-Verlag, Berlin Heidelberg.
http://dx.doi.org/10.1007/978-1-4612-0869-3
[23] Hatano, N. and Suzuki, M. (1993) Quantum Monte Carlo Methods in Condensed Matter Physics. World Scientific, Singapore, 13-47.
[24] De Raedt, H. and von der Linden, W. (1995) The Monte Carlo Method in Condensed Matter Physics. Springer-Verlag, Berlin Heidelberg, 249-284.
[25] Munehisa, T. and Munehisa, Y. (2003) A New Approach to Stochastic State Selections in Quantum Spin Systems. Journal of the Physical Society of Japan, 72, 2759-2765.
http://dx.doi.org/10.1143/JPSJ.72.2759
[26] Nishimori, H. and Nakanishi, H. (1988) Ground State of Quantum Spin Systems on the Triangular Lattice. Journal of the Physical Society of Japan, 57, 626-638. http://dx.doi.org/10.1143/JPSJ.57.626
[27] Sandvik, A. and Hamer, C. (1999) Ground-State Parameters, Finite-Size Scaling, and Low-Temperature Properties of the Two-Dimensional S = 1/2 XY Model. Physical Review B, 60, 6588-6592.
http://dx.doi.org/10.1103/PhysRevB.60.6588
[28] Jaklic, J. and Prelpvsek, P. (1994) Lanczos Method for the Calculation of Finite-Temperature Quantities in Correlated Systems. Physical Review B, 49, 5065-5068.
http://dx.doi.org/10.1103/PhysRevB.49.5065
[29] Neuberger, H. and Zimman, T. (1989) Finite-Size Effects in Heisenberg Antiferromagnets. Physical Review B, 39, 2608-2618.
http://dx.doi.org/10.1103/PhysRevB.39.2608
[30] Long, M.W., Prelovsek, P., El Shawish, S., Karadamoglou, J. and Zotos, X. (2003) Finite-Temperature Dynamical Correlation Using the Microcanonical Ensemble and the Lanczos Algorithm. Physical Review B, 68, Article ID: 235106.
http://dx.doi.org/10.1103/physrevb.68.235106
[31] Jaklic, J. and Prelpvsek, P. (2000) Finite-Temperature Properties of Doped Antiferromagnets. Advance Physics, 49, 1- 92.
http://dx.doi.org/10.1080/000187300243381
[32] Munehisa, T. (2014) An Improved Finite Temperature Lanczos Method and Its Application to the Spin-1/2 Heisenberg Model on the Kagome Lattice. World Journal of Condensed Matter Physics, 4, 134-140.
http://dx.doi.org/10.4236/wjcmp.2014.43018

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.