Share This Article:

From Nonparametric Density Estimation to Parametric Estimation of Multidimensional Diffusion Processes

Abstract Full-Text HTML XML Download Download as PDF (Size:412KB) PP. 1592-1610
DOI: 10.4236/am.2015.69142    2,331 Downloads   2,675 Views  

ABSTRACT

The paper deals with the estimation of parameters of multidimensional diffusion processes that are discretely observed. We construct estimator of the parameters based on the minimum Hellinger distance method. This method is based on the minimization of the Hellinger distance between the density of the invariant distribution of the diffusion process and a nonparametric estimator of this density. We give conditions which ensure the existence of an invariant measure that admits density with respect to the Lebesgue measure and the strong mixing property with exponential rate for the Markov process. Under this condition, we define an estimator of the density based on kernel function and study his properties (almost sure convergence and asymptotic normality). After, using the estimator of the density, we construct the minimum Hellinger distance estimator of the parameters of the diffusion process and establish the almost sure convergence and the asymptotic normality of this estimator. To illustrate the properties of the estimator of the parameters, we apply the method to two examples of multidimensional diffusion processes.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N’drin, J. and Hili, O. (2015) From Nonparametric Density Estimation to Parametric Estimation of Multidimensional Diffusion Processes. Applied Mathematics, 6, 1592-1610. doi: 10.4236/am.2015.69142.

References

[1] Dacunha-Castelle, D. and Florens-Zmirou, D. (1986) Estimation of the Coefficients of a Diffusion from Discrete Observations. Stochastics, 19, 263-284.
http://dx.doi.org/10.1080/17442508608833428
[2] Pedersen, A.R. (1995) A New Approach to Maximum Likelihood Estimation for Stochastic Differential Equations Based on Discrete Observations. Scandinavian Journal of Statistics, 22, 55-71.
[3] Yoshida, N. (1992) Estimation for Diffusion Processes from Discrete Observation. Journal of Multivariate Analysis, 41, 220-242.
http://dx.doi.org/10.1016/0047-259X(92)90068-Q
[4] Aït-Sahalia, Y. (2002) Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approximation Approach. Econometrica, 70, 223-262.
http://dx.doi.org/10.1111/1468-0262.00274
[5] Florens-Zmirou, D. (1989) Approximate Discrete-Time Schemes for Statistics of Diffusion Processes. Statistics, 20, 547-557.
http://dx.doi.org/10.1080/02331888908802205
[6] Bibby, B.M. and Sørensen, M. (1995) Martingale Estimation Functions for Discretely Observed Diffusion Processes. Bernoulli, 1, 17-39.
http://dx.doi.org/10.2307/3318679
[7] Beran, R. (1977) Minimum Hellinger Distance Estimates for Parametric Models. Annals of Statistics, 5, 445-463.
http://dx.doi.org/10.1214/aos/1176343842
[8] Hili, O. (1995) On the Estimation of Nonlinear Time Series Models. Stochastics: An International Journal of Probability and Stochastic Processes, 52, 207-226.
http://dx.doi.org/10.1080/17442509508833972
[9] N’drin, J.A. and Hili, O. (2013) Parameter Estimation of One-Dimensional Diffusion Process by Minimum Hellinger Distance Method. Random Operators and Stochastic Equations, 21, 403-424.
http://dx.doi.org/10.1515/rose-2013-0019
[10] Bianchi, A. (2007) Nonparametric Trend Coefficient Estimation for Multidimensional Diffusions. Comptes Rendus de l’Académie des Sciences, 345, 101-105.
[11] Pardoux, E. and Veretennikov, Y.A. (2001) On the Poisson Equation and Diffusion Approximation. I. The Annals of Probability, 29, 1061-1085.
http://dx.doi.org/10.1214/aop/1015345596
[12] Veretennikov, Y.A. (1997) On Polynomial Mixing Bounds for Stochastic Differential Equations. Stochastic Process, 70, 115-127.
http://dx.doi.org/10.1016/S0304-4149(97)00056-2
[13] Devroye, L. and Györfi, L. (1985) Nonparametric Density Estimation: The L1 View. Wiley, New York.
[14] Glick, N. (1974) Consistency Conditions for Probability Estimators and Integrals of Density Estimators. Utilitas Mathematica, 6, 61-74.
[15] Jacobsen, M. (2001) Examples of Multivariate Diffusions: The Time-Reversibility, a Cox-Ingersoll-Ross Type Process. Department of Statistics and Operations Research, University of Copenhagen, Copenhagen.
[16] Caumel, Y. (2011) Probabilités et processus stochastiques. Springer-Verlag, Paris.
http://dx.doi.org/10.1007/978-2-8178-0163-6
[17] Iacus, S.M. (2008) Simulation and Inference for Stochastic Differential Equations. Springer Series in Statistics, Springer, New York.
http://dx.doi.org/10.1007/978-0-387-75839-8
[18] Lafaye de Micheaux, P., Drouilhet, R. and Liquet, B. (2011) Le logiciel R: Maitriser le langage-Effectuer des analyses statistiques. Springer-Verlag, Paris.
http://dx.doi.org/10.1007/978-2-8178-0115-5
[19] Sørensen, H. (2001) Discretely Observed Diffusions: Approximation of the Continuous-Time Score Function. Scandinavian Journal of Statistics, 28, 113-121.
http://dx.doi.org/10.1111/1467-9469.00227
[20] Iacus, S.M. (2011) Option Pricing and Estimation of Financial Models with R. John Wiley and Sons, Ltd., Chichester.
http://dx.doi.org/10.1002/9781119990079
[21] Roussas, G.G. (1969) Nonparametric Estimation in Markov Processes. Annals of the Institute of Statistical Mathematics, 21, 73-87.
http://dx.doi.org/10.1007/BF02532233
[22] Bosq, D. (1998) Nonparametric Statistics for Stochastic Processes: Estimation and Prediction. Second Edition, Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-1718-3
[23] Dharmenda, S. and Masry, E. (1996) Minimum Complexity Regression Estimation with Weakly Dependent Observations. IEEE Transactions on Information Theory, 42, 2133-2145.
http://dx.doi.org/10.1109/18.556602
[24] Dominique, F. and Aimé, F. (1998) Calcul des probabilities: Cours, exercices et problèmes corrigés. 2e edition, Dunod, Paris.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.