Share This Article:

Analyzing an UWB Bandpass Filter for High Power Applications Using Rectangular Coaxial Cables with Square Inner Conductors

Abstract Full-Text HTML Download Download as PDF (Size:882KB) PP. 121-126
DOI: 10.4236/cs.2011.23018    4,706 Downloads   8,760 Views   Citations

ABSTRACT

Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO® (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for high power applications, are presented. The design of the UWB BP filter is based on the use of impedance steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is between 3-10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 dB in a large frequency range (4-9.5) GHz. The simulated results of stopband performances are better than 15 dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 mm in size.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Benahmed, N. Benabdallah, S. Seghier, F. Bendimerad and B. Benyoucef, "Analyzing an UWB Bandpass Filter for High Power Applications Using Rectangular Coaxial Cables with Square Inner Conductors," Circuits and Systems, Vol. 2 No. 3, 2011, pp. 121-126. doi: 10.4236/cs.2011.23018.

References

[1] FCC, “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission System,” Technical Report ET-Docket 98-153, 14 February 2002.
[2] G. R. Aiello and G. D. Rogerson, “Ultra-Wideband Wireless Systems,” IEEE Microwave Magazine, Vol. 4, No. 2, 2003, pp. 36-47. doi:10.1109/MMW.2003.1201597
[3] Z. Irahhauten, H. Nikookar, and G. J. M. Janssen, “An Overview of Ultra Wide Band indoor Channel Measurements and Modeling,” IEEE Microwave and Wireless Components Letters, Vol. 14, No. 8, 2004, pp. 386-388. doi:10.1109/LMWC.2004.832620
[4] G. Matthaei, L. Young and E. M. T. Jones, “Design of Microwave Filters, Impedance-Matching Networks, and Coupling Structures,” Artech House, Norwood, 1980.
[5] A. Saito, H. Harada and A. Nishikata, “Development of Bandpass Filter for Ultra Wideband (UWB) Communication Systems,” Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies, Reston, 16-19 November 2003, pp. 76-80.
[6] L. Zhu, S. Sun and W. Menzel, “Ultra-Wideband (UWB) Bandpass Filters Using Multiple-Mode Resonator,” IEEE Microwave Wireless Components Letters, Vol. 15, No. 11, 2005, pp. 796-798. doi:10.1109/LMWC.2005.859011
[7] J. Gao, L. Zhu, W. Menzel and F. B?gelsack, “Short-Circuited CPW Multiple-Mode Resonator for Ultra-Wideband (UWB) Bandpass Filter,” IEEE Microwave Wireless Components Letters, Vol. 16, No. 3, 2006, pp. 104-106. doi:10.1109/LMWC.2006.869870
[8] M. Meeloon, S. Chaimool and P. Akkaraekthalin, “Broadband Bandpass Filters Using Slotted Resonators Fed by Interdigital Coupled Lines for Improved Upper Stopband Performances,” International Journal of Electronics and Communications, Vol. 63, No. 6, 2009, pp. 454-463. doi:10.1016/j.aeue.2008.03.005
[9] www.Freefem.org.
[10] www.CST.com.
[11] S. Seghier and N. Benahmed, “Analyse et Conception d’un Coupleur Coaxial Rectangulaire à Conducteurs Internes Circulaires par la Méthode des Eléments Finis,” Afrique Science, Vol. 2, No. 3, 2006, pp. 300-313.
[12] N. Benahmed and M. Feham, “Rigorous Analytical Expressions for Electromagnetic Parameters of Transmission Lines: Coupled Sliced Coaxial Cable,” Microwave Journal, Vol. 44, No. 11, 2001, pp. 130-138.
[13] N. Benabdallah, N. Benahmed, S. Seghier and R. Bouhmidi, “Sliced Coaxial Cables form Compact Cou- plers,” Microwaves and RF, Vol. 46, No. 7, 2007, pp. 90-94.
[14] N. Benahmed and S. Seghier, “Rigorous Analytical Expressions for the Electromagnetic Parameters of Rectangular Coaxial Couplers with Circular and Square Inner Conductors,” Microwave Journal, Vol. 49, No. 8, 2006, pp. 164-174.
[15] N. Benahmed, M. Feham and M. Kameche, “Finite Element Analysis of Planar Couplers,” Applied Microwave & Wireless, Vol. 12, No. 10, 2000, pp. 28-38.
[16] S. Seghier, N. Benabdallah, N. Benahmed, N. Benmostefa and R. Bouhmidi, “Accurate Closed-Form Formulas for the Electromagnetic Parameters of Squared Coaxial Lines,” International Journal of Electronics and Communications, Vol. 62, No. 5, 2008, pp. 395-400.
[17] A. R. Djordjevic, M. B. Bazdar and T. K. Sarkan, “LINPAR for Windows: Matrix Parameters of Multiconductor Transmission Lines, Software and User’S Manual,” Artech House, London, 1999.
[18] W. Menzel, L. Zhu, K. Wu and F. Bogelsack, “On the Design of Novel Compact Broadband Planar Filters,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 2003, pp. 364-370. doi:10.1109/TMTT.2002.807843
[19] A. R. Djordjevic, M. Bazdar, G. Vitosevic, T. Sarkar and R. F. harrington, “Scattering Parameters of Microwave Networks with Multiconductor Transmission Lines,” Artech House, London, 1990

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.