Share This Article:

Hippocampal Pallium and Map-Like Memories through Vertebrate Evolution

Abstract Full-Text HTML XML Download Download as PDF (Size:1543KB) PP. 109-120
DOI: 10.4236/jbbs.2015.53011    2,883 Downloads   3,498 Views   Citations


The hippocampus in humans and other mammals is essential for episodic and relational memories. Comparative evidence indicates that a hippocampal pallium homologue is present in birds, reptiles, amphibians, ray-finned fishes, cartilaginous fishes and agnathans. Some of their characteristics, such as the topological position and the pattern of connectivity, appear remarkably well conserved. We review here substantial data showing that in all the vertebrate groups studied up to date, from fish to mammals, the hippocampus plays a fundamental role in spatial memory. In these vertebrates groups, the hippocampal pallium homologue is involved in the use of map-like, relational representations of the objective space that provide stable allocentric frames of reference, thus allowing flexible navigation. These similarities suggest a common evolutionary ancestry and indicate that the functional properties of the hippocampus appear early in the vertebrate phylogenesis and are retained through the independent evolution of the vertebrate lineages.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Broglio, C. , Martín-Monzón, I. , Ocaña, F. , Gómez, A. , Durán, E. , Salas, C. and Rodríguez, F. (2015) Hippocampal Pallium and Map-Like Memories through Vertebrate Evolution. Journal of Behavioral and Brain Science, 5, 109-120. doi: 10.4236/jbbs.2015.53011.


[1] Aggleton, J.P. and Brown, M.W. (1999) Episodic Memory, Amnesia, and the Hippocampal-Anterior Thalamic Axis. Behavioral & Brain Sciences, 22, 425-489.
[2] Burgess, N., Maguire, E.A. and O’Keefe, J. (2002) The Human Hippocampus and Spatial and Episodic Memory. Neuron, 35, 625-641.
[3] Eichenbaum, H. and Cohen, N.J. (2001) From Conditioning to Conscious Recollection: Memory Systems of the Brain. Oxford University Press, New York.
[4] Konkel, A. and Cohen, N.J. (2009) Relational Memory and the Hippocampus: Representations and Methods. Frontiers in Neuroscience, 3, 166-174.
[5] Squire, L.R., Stark, C.E. and Clark, R.E. (2004) The Medial Temporal Lobe. Annual Reviews Neuroscience, 27, 279-306.
[6] Eichenbaum, H., Stewart, C. and Morris, R.G. (1990) Hippocampal Representation in Place Learning. Journal of Neuroscience, 10, 3531-3542.
[7] McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I. and Moser, M.B. (2006) Path Integration and the Neural Basis of the “Cognitive Map”. Nature Reviews Neuroscience, 7, 663-678.
[8] Morris, R.G. (2006) Theories of Hippocampal Function. In: Andersen, R., Morris, R., Amaral, D., Bliss, T. and O’Keefe, J., Eds., The Hippocampus Book, Oxford University Press, London, 581-712.
[9] O’Keefe, J. and Nadel, L. (1978) The Hippocampus as a Cognitive Map. Clarendon Press, Oxford.
[10] Wiener, J., Shettleworth, S.J., Bingman, V.P., Cheng, K., Healy, S.D., Jacobs, L.F., Jeffery, K.J., Mallot, H.A., Menzel, R. and Newcombe, N.S. (2011) Animal Navigation—A Synthesis. In: Menzel, R. and Fisher, J., Eds., Animal Thinking, MIT Press, Cambridge, 1-33.
[11] Jacobs, L.F. and Menzel, R. (2014) Navigation Outside of the Box: What the Lab Can Learn from the Field and What the Field can Learn from the Lab. Movement Ecology, 2, 3.
[12] Thinus-Blanc, C. (1996) Animal Spatial Cognition: Behavioral and Neural Approaches. World Scientific Publishing Co., Singapore.
[13] Burgess, N., Jeffery, K.J. and O’Keefe, J. (1999) The Hippocampal and Parietal Foundations of Spatial Cognition. Oxford University Press, London.
[14] Coppola, V.J., Spencer, J.M., Peterson, R.M. and Bingman, V.P. (2014) Hippocampal Lesions in Homing Pigeons Do Not Impair Feature-Quality or Feature-Quantity Discrimination. Behavioural Brain Research, 260, 83-91.
[15] Fremouw, T., Jackson-Smith, P. and Kesner, R.P. (1997) Impaired Place Learning and Unimpaired Cue Learning in Hippocampal-Lesioned Pigeons. Behavioral Neuroscience, 111, 963-975.
[16] Good, M. and Macphail, E.M. (1994) The Avian Hippocampus and Short-Term Memory for Spatial and Non-Spatial Information. Quarterly Journal of Experimental Psychology B, 47, 293-317.
[17] Hampton, R.R., Hampstead, B.M. and Murray, E.A. (2004) Selective Hippocampal Damage in Rhesus Monkeys Impairs Spatial Memory in an Open-Field Test. Hippocampus, 14, 808-818.
[18] Sherry, D.F. and Duff, S.J. (1996) Behavioral and Neural Bases of Orientation in Food Storing Birds. Journal of Experimental Biology, 199, 165-172.
[19] Holtzman, D.A., Harris, T.W., Aranguren, G. and Bostock, E. (1999) Spatial Learning of an Escape Task by Young Corn Snakes, Elaphe guttata guttata. Animal Behaviour, 57, 51-60.
[20] LaDage, L.D., Roth, T.C., Cerjanic, A.M., Sinervo, B. and Pravosudov, V.V. (2012) Spatial Memory: Are Lizards Really Deficient? Biology Letters, 8, 939-941.
[21] López, J.C., Rodríguez, F., Gómez, Y., Vargas, J.P., Broglio, C. and Salas, C. (2000) Place and Cue Learning in Turtles. Animal Learning & Behaviour, 28, 360-372.
[22] López, J.C., Gómez, Y., Rodríguez, F., Broglio, C., Vargas, J.P. and Salas, C. (2001) Spatial Learning in Turtles. Animal Cognition, 4, 49-59.
[23] Mueller-Paul, J., Wilkinson, A., Hall, G. and Huber, L. (2012) Radial-Arm-Maze Behaviour of the Red-Footed Tortoise (Geochelone carbonaria). Journal of Comparative Psychology, 126, 305-317.
[24] Stone, A., Ford, N.B. and Holtzman, D.A. (2000) Spatial Learning and Shelter Selection by Juvenile Spotted Pythons, Anteresia maculosus. Journal of Herpetology, 34, 575-587.
[25] Wilkinson, A., Chan, H. and Hall, G, (2007) Spatial Learning and Memory in the Tortoise (Geochelone carbonaria). Journal of Comparative Psychology, 121, 412-418.
[26] Wilkinson, A., Coward, S. and Hall, G. (2009) Visual and Response-Based Navigation in the Tortoise (Geochelone carbonaria). Animal Cognition, 12, 779-787.
[27] Butler, A.B. and Hodos, H. (2005) Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. Wiley-Liss, New York.
[28] Jarvis, E.D. (2009) Evolution of the Pallium in Birds and Reptiles. In: Binder, M.D., Hirokawa, N. and Windhorst, U. Eds., Encyclopedia of Neuroscience, Springer, Berlin, 1390-1400.
[29] Nieuwenhuys, R., Ten Donkelaar, H.J. and Nicholson, C. (1998) The Central Nervous System of Vertebrates. Springer-Verlag, Berlin.
[30] Northcutt, R.G. (1981) Evolution of the Telencephalon in Nonmammals. Annual Review Neuroscience, 4, 301-350.
[31] Striedter, G.F. (2005) Principles of Brain Evolution. Sinauer Associates, Sunderland.
[32] Ulinski, P.S. (1990) The Cerebral Cortex of Reptiles. In: Jones, E.G. and Peters, A., Eds., Comparative Structure and Evolution of Cerebral Cortex, Part I, Plenum, New York, 139-215.
[33] Schwerdtfeger, W.K. and Smeets, W.J.A.J. (1988) The Forebrain of Reptiles. Current Concepts of Structure and Function. Karger, Basel.
[34] Bruce, L.L. and Butler, A.B. (1984) Telencephalic Connections in Lizards. I. Projections to Cortex. Journal of Comparative Neurology, 229, 585-601.
[35] Hoogland, P.V. and Vermeulen-Vanderzee, E. (1993) Medial Cortex of the Lizard (Gecko gecko): A Hodological Study with Emphasis on Regional Specialization. Journal of Comparative Neurology, 331, 326-338.
[36] López, J.C., Vargas, J.P., Gómez, Y. and Salas, C. (2003) Spatial and Non-Spatial Learning in Turtles: The Role of Medial Cortex. Behavioural Brain Research, 143, 109-120.
[37] Rodríguez, F., López, J.C., Vargas, J.P., Gómez, Y., Broglio, C. and Salas, C. (2002) Conservation of Spatial Memory Function in the Pallial Forebrain of Amniotes and Ray Finned-Fishes. Journal of Neuroscience, 22, 2894-2903.
[38] López, J.C., Gómez, Y., Vargas, J.P. and Salas, C. (2003) Spatial Reversal Learning Deficit after Medial Cortex Lesion in Turtles. Neuroscience Letters, 341, 197-200.
[39] Powers, A.S. (1990) Brain Mechanisms of Learning in Reptiles. In: Kesner, R.P. and Olton, D.S., Eds., Neurobiology of Comparative Cognition, Lawrence Erlbaum Associates, Hillsdale, 157-177.
[40] Holding, M.L., Frazier, J.A., Taylor, E.N. and Strand, C.R. (2012) Experimentally Altered Navigational Demands Induce Changes in the Cortical Forebrain of Free-Ranging Northern Pacific Rattlesnakes (Crotalus o. oreganus). Brain Behaviour & Evolution, 79, 144-154.
[41] Day, L., Crews, D. and Wilczynski, W. (1999) Relative Medial and Dorsal Cortex Volume in Relation to Foraging Ecology in Congeneric Lizards. Brain Behaviour & Evolution, 54, 314-322.
[42] Day, L.B., Crews, D. and Wilczynski, W. (2001) Effects of Medial and Dorsal Cortex Lesions on Spatial Memory in Lizards. Behavioural Brain Research, 118, 27-42.
[43] Roth, E.D., Lutterschmidt, W.I. and Wilson, D.A. (2006) Relative Medial and Dorsal Cortex Volume in Relation to Sex Differences in Spatial Ecology of a Snake Population. Brain Behaviour & Evolution, 67, 103-110.
[44] LaDage, L.D., Maged, R.M., Forney, M.V., Roth, T.C., Sinervo, B. and Pravosudov, V.V. (2013) Interaction between Territoriality, Spatial Environment, and Hippocampal Neurogenesis in Male Side-Blotched Lizards. Behavioural Neuroscience, 127, 555-565.
[45] Maine, A.R., Powers, S.D. and Lutterschmidt, D.I. (2014) Seasonal Variation in Cell Proliferation and Cell Migration in the Brain of Adult Red-Sided Garter Snakes (Thamnophis sirtalis parietalis). Brain Behaviour & Evolution, 84, 181-196.
[46] Munoz, M.D., Gaztelu, J.M. and García-Austt, E. (1998) Homo- and Heterosynaptic Long-Term Potentiation in the Medial Cortex of the Turtle Brain in Vitro. Brain Research, 807, 155-159.
[47] Munoz, M.D., Magarinos-Ascone, C., Gaztelu, J.M. and García-Austt, E. (1998) Frequency Potentiation in the Medial Cortex of Young Turtle Brains in Vitro. Brain Behavior & Evolution, 52, 263-269.
[48] Pasukonis, A., Loretto, M.C., Landler, L., Ringler, M. and Hodl, W. (2014) Homing Trajectories and Initial Orientation in a Neotropical Territorial Frog, Allobates femoralis (Dendrobatidae). Frontiers in Zoology, 11, 29.
[49] Sotelo, M.I., Bingman, V.P. and Muzio, R.N. (2015) Goal Orientation by Geometric and Feature Cues: Spatial Learning in the Terrestrial Toad Rhinella arenarum. Animal Cognition, 18, 315-323.
[50] Papastamatiou, Y.P., Cartamil, D.P., Lowe, C.G., Meyer, C.G., Wetherbee, B.M. and Holland, K.N. (2011) Scales of Orientation, Directed Walks and Movement Path Structure in Sharks. Journal of Animal Ecology, 80, 864-874.
[51] Schluessel, V. and Bleckmann, H. (2005) Spatial Memory and Orientation Strategies in the Elasmobranch Potamotrygon motoro. Journal of Comparative Physi-ology A, 191, 695-706.
[52] Schluessel, V. and Bleckmann, H. (2012) Spatial Learning and Memory Retention in the Grey Bamboo Shark (Chiloscyllium griseum). Zoology, 115, 346-353.
[53] Nieuwenhuys, R. (1963) The Comparative Anatomy of the Actinopterygian Forebrain. Journal für Hirnforschung, 6, 171-200.
[54] Nieuwenhuys, R. (2011) The Development and General Morphology of the Telencephalon of Actinopterygian Fishes: Synopsis, Documentation and Commentary. Brain Structure & Function, 215, 141-157.
[55] Northcutt, R.G. and Braford, M.R. (1980) New Observations on the Organization and Evolution of the Telencephalon of Actinopterygian Fishes. In: Ebbesson, S.O.E., Ed., Comparative Neurology of the Telencephalon, Plenum Press, New York, 41-98.
[56] Striedter, G.F. and Northcutt, R.G. (2006) Head Size Constrains Forebrain Development and Evolution in Ray-Finned Fishes. Evolution & Development, 8, 215-222.
[57] Braford, M.R. (1995) Comparative Aspects of Forebrain Organization in the Ray-Finned Fishes: Touchstones or Not? Brain Behaviour & Evolution, 46, 259-274.
[58] Butler, A.B. (2000) Topography and Topology of the Teleost Telencephalon: A Paradox Resolved. Neuroscience Letters, 293, 95-98.
[59] Nieuwenhuys, R. and Meek, J. (1990) The Telencephalon of Actinopterygian Fishes. In: Jones, E.G. and Peters, A., Eds., Comparative Structure and Evolution of the Cerebral Cortex, Plenum Press, New York, 31-73.
[60] Northcutt, R.G. (1995) The Forebrain of Gnathostomes: In Search of a Morphotype. Brain Behaviour & Evolution, 46, 275-318.
[61] Northcutt, R.G. (2006) Connections of the Lateral and Medial Divisions of the Goldfish Telencephalic Pallium. Journal of Comparative Neurology, 494, 903-943.
[62] Kapsimali, M., Vidal, B., Gonzalez, A., Dufour, S. and Vernier, P. (2000) Distribution of the mRNA Encoding the Four Dopamine D(1) Receptor Subtypes in the Brain of the European Eel (Anguilla anguilla): Comparative Approach to the Function of D(1) Receptors in Vertebrates. Journal of Comparative Neurology, 419, 20-43.<320::AID-CNE5>3.0.CO;2-F
[63] Wullimann, M.F. and Mueller, T. (2004) Teleostean and Mammalian Forebrains Contrasted: Evidence from Genes to Behaviour. Journal of Comparative Neurology, 75, 143-162.
[64] Yamamoto, N., Ishikawa, Y., Yoshimoto, M., Xue, H.G., Bahaxar, N., Sawai, N., Yang, C.Y., Ozawa, H. and Ito, H. (2007) A New Interpretation on the Homology of the Teleostean Telencephalon Based on Hodology and a New Eversion Model. Brain Behaviour & Evolution, 69, 96-104.
[65] Yamamoto, N. and Ito, H. (2008) Visual, Lateral Line, and Auditory Ascending Pathways to the Dorsal Telencephalic Area through the Rostrolateral Region of the Lateral Preglomerular Nucleus in Cyprinids. Journal of Comparative Neurology, 508, 615-647.
[66] Harvey-Girard, E., Giassi, A.C., Ellis, W. and Maler, L. (2012) Organization of the Gymnotiform Fish Pallium in Relation to Learning and Memory: IV. Expression of Conserved Transcription Factors and Implications for the Evolution of Dorsal Telencephalon. Journal of Comparative Neurology, 520, 3395-3413.
[67] Broglio, C., Rodríguez, F. and Salas, C. (2003) Spatial Cognition and Its Neural Basis in Teleost Fishes. Fish & Fisheries, 4, 247-255.
[68] Durán, E., Ocana, F.M., Gómez, A., Jiménez-Moya, F., Broglio, C., Rodríguez, F. and Salas C. (2008) Telencephalon Ablation Impairs Goldfish Allocentric Spatial Learning in a “Hole-Board” Task. Acta Neurobiologie Experimentalis, 68, 519-525.
[69] López, J.C., Broglio, C., Rodríguez, F., Thinus-Blanc, C. and Salas C. (1999) Multiple Spatial Learning Strategies in Goldfish (Carassius auratus). Animal Cognition, 2, 109-120.
[70] Rodríguez, F., Durán, E., Vargas, J.P., Torres, B. and Salas, C. (1994) Performance of Goldfish Trained in Allocentric and Egocentric Maze Procedures Suggests the Presence of a Cognitive Mapping System in Fishes. Animal Learning & Behaviour, 22, 409-420.
[71] Salas, C., Broglio, C., Durán, E., Gómez, A. and Rodríguez, F. (2008) Spatial Learning in Fish. In: Menzel, R., Ed., Learning Theory and Behavior. Vol. 1 of Learning and Memory: A Comprehensive Reference, Elsevier, Oxford, 499-528.
[72] Salas, C., Broglio, C., Rodríguez, F., López, J.C., Portavella, M. and Torres, B. (1996) Telencephalic Ablation in Goldfish Impairs Performance in a Spatial Constancy Problem but Not in a Cued One. Behavioural Brain Research, 79, 193-200.
[73] Salas, C., Rodríguez, F., Vargas, J.P., Durán, E. and Torres, B. (1996) Spatial Learning and Memory Deficits after Telencephalic Ablation in Goldfish Trained in Place and Turn Maze Procedures. Behavioural Neuroscience, 110, 965- 980.
[74] Sovrano, V.A., Bisazza, A. and Vallortigara, G. (2003) Modularity as a Fish (Xenotoca eiseni) Views It: Conjoining Geometric and Nongeometric Information for Spatial Reorientation. Journal of Experimental Psychology Animal Behaviour Processes, 29, 199-210.
[75] Vargas, J.P., López, J.C., Salas, C. and Thinus-Blanc, C. (2004) Encoding of Geometric and Featural Spatial Information by Goldfish (Carassius auratus). Journal of Comparative Psychology, 118, 206-216.
[76] Broglio, C., Rodríguez, F., Gómez, A., Arias, J.L. and Salas, C. (2010) Selective Involvement of the Goldfish Lateral Pallium in Spatial Memory. Behavioural Brain Research, 210, 191-201.
[77] Durán, E., Ocana, F.M., Broglio, C., Rodríguez, F. and Salas, C. (2010) Lateral but Not Medial Telencephalic Pallium Ablation Impairs the Use of Goldfish Spatial Allocentric Strategies in a “Hole-Board” Task. Behavioural Brain Research, 214, 480-487.
[78] Hampton, R.R. and Shettleworth, S.J. (1996) Hippocampal Lesions Impair Memory for Location but Not Color in Passerine Birds. Behavioural Neuroscience, 110, 831-835.
[79] Vargas, J.P., Rodríguez, F., López, J.C., Arias, J.L. and Salas, C. (2000) Spatial Learning-Induced Increase in the Argyrophilic Nucleolar Organizer Region of Dorsolateral Telencephalic Neurons in Goldfish. Brain Research, 865, 77-84.
[80] Derenzini, M. (2000) The AgNORs. Micron, 31, 117-120.
[81] Conejo, N.M., González-Pardo, H., Gonzalez-Lima, F. and Arias, J.L. (2010) Spatial Learning of the Water Maze: Progression of Brain Circuits Mapped with Cytochrome Oxidase Histochemistry. Neurobiology of Learning & Memory, 93, 362-371.
[82] Gonzalez-Lima, F. and Cada, A. (1994) Cytochrome Oxidase Activity in the Auditory System of the Mouse: A Qualitative and Quantitative Histochemical Study. Neuroscience, 63, 559-578.
[83] Poremba, A., Jones, D. and Gonzalez-Lima, F. (1998) Classical Conditioning Modifies Cytochrome Oxidase Activity in the Auditory System. European Journal of Neuroscience, 10, 3035-3043.
[84] Wong-Riley, M.T. (1989) Cytochrome Oxidase: An Endogenous Metabolic Marker for Neuronal Activity. Trends in Neurosciences, 12, 94-101.
[85] Uceda, S., Ocana, F.M., Martín-Monzón, I., Rodríguez-Expósito, B., Broglio, C., Durán, E. and Rodríguez, F. (2015) Spatial Learning-Related Changes in Metabolic Brain Activity Contributes to the Delimitation of the Hippocampal Pallium in Goldfish. In Preparation.
[86] Costa, S.S., Andrade, R., Carneiro, L.A., Goncalves, E.J., Kotrschal, K. and Oliveira, R.F. (2011) Sex Differences in the Dorsolateral Telencephalon Correlate with Home Range Size in Blenniid Fish. Brain Behaviour & Evolution, 77, 55-64.
[87] Shumway, C.A. (2008) Habitat Complexity, Brain, and Behaviour. Brain Behaviour & Evolution, 72, 123-134.
[88] Bachy, I., Berthon, J. and Rétaux, S. (2002) Defining Pallial and Subpallial Compartments in the Developing Xenopus Forebrain. Mechanisms of Development, 117, 163-172.
[89] Garda, A.L., Puelles, L., Rubenstein, J.L.R. and Medina, L. (2002) Expression Patterns of Wnt8b and Wnt7b in the Chicken Embryonic Brain Suggests a Correlation with Forebrain Organizers. Neuroscience, 113, 689-698.
[90] Medina, L., Brox, A., Legaz, I., García-López, M. and Puelles, L. (2005) Expression Patterns of Developmental Regulatory Genes Show Comparable Divisions in the Telencephalon of Xenopus and Mouse: Insights into the Evolution of the Forebrain. Brain Research Bulletin, 66, 297-302.
[91] Puelles, L. (2001) Thoughts on the Development, Structure and Evolution of the Mammalian and Avian Telencephalic Pallium. Philosophical Transactions of the Royal Society of London, 356, 1583-1598.
[92] Smith-Fernandez, A., Pieau, C., Reperant, J., Boncinelli, E. and Wassef, M. (1998) Expression of the Emx-1 and Dlx-1 Homeobox Genes Define Three Molecularly Distinct Domains in the Telencephalon of Mouse, Chick, Turtle and Frog Embryos: Implications for the Evolution of Telencephalic Subdivisions in Amniotes. Development, 125, 2099-2111.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.