Share This Article:

Validation of the Suitability of Stripped Lipid as a Skin Model in Plasma Medical Investigations

Abstract Full-Text HTML XML Download Download as PDF (Size:1519KB) PP. 40-49
DOI: 10.4236/ojapps.2015.52005    2,528 Downloads   2,939 Views   Citations

ABSTRACT

In this work, the suitability of lipid stripping as an alternative model of stratum corneum for plasma medical studies was investigated. Plasma treatment experiments were performed on samples prepared by the cyanoacrylat stripping method. Therefore, two different dielectric barrier discharge-based plasma sources driven by high-voltage pulses in the microsecond and nanosecond range were applied. The lipid sample heating, change in pH-value, and the interaction with plasma-induced UV-radiation are presented and discussed with respect to existing findings on skin samples. After the plasma treatment, the lipid stripping shows similar changes compared to human skin relating to sample heating and pH-value. The investigation of the interplay with UV- radiation shows a high absorption in the wavelength range of 250 nm up to 400 nm. Further, the thickness, surface structure, and composition of lipid stripping samples were determined. The stripped sample shows a thickness of 3 ± 1 μm whereby approximately 30% of the sample surface is covered by lipids. In addition, it was shown that there are no changes in structure caused by the sample preparation. Based on the results of this work, it can be stated that lipid stripping represents an appropriate skin model for plasma medical investigations.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hirschberg, J. , Gerhard, C. , Braun, A. , Grottker, S. , Krupp, A. , Emmert, S. and Viöl, W. (2015) Validation of the Suitability of Stripped Lipid as a Skin Model in Plasma Medical Investigations. Open Journal of Applied Sciences, 5, 40-49. doi: 10.4236/ojapps.2015.52005.

References

[1] Woedtke, T., Reuter, S., Masur, K. and Weltmann, K.-D. (2013) Plasmas for Medicine. Physics Reports, 530, 291-320. http://dx.doi.org/10.1016/j.physrep.2013.05.005
[2] Weltmann, K.-D., Kindel, E., Brandenburg, R., Meyer, C., Bussiahn, R., Wilke, C. and Woedtke, T. (2009) Atmosphe- ric Pressure Plasma Jet for Medical Therapy: Plasma Parameters and Risk Estimation. Contributions to Plasma Physics, 49, 631-640.
http://dx.doi.org/10.1002/ctpp.200910067
[3] Kong, M., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., Dijk, J. and Zimmermann, J. (2009) Plasma Medicine: an Introductory Review. New Journal of Physics, 11, Article ID: 115012.
http://dx.doi.org/10.1088/1367-2630/11/11/115012
[4] Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Woedtke, T., Brandenburg, R., Hagen, T. and Weltmann, K.-D. (2011) Low Temperature Atmospheric Pressure Plasma Sources for Microbial Decontamination. Journal of Physics D: Applied Physics, 44, Article ID: 013002.
http://dx.doi.org/10.1088/0022-3727/44/1/013002
[5] Tümmel, S., Mertens, N., Wang, J. and Viöl, W. (2007) Low Temperature Plasma Treatment of Living Human Cells. Plasma Processes and Polymers, 4, 465-469.
http://dx.doi.org/10.1002/ppap.200731208
[6] Awakowicz, P., Bibinov, N., Born, M., Busse, B., Gesche, R., Helmke, A., Kaemling, A., Kolb-Bachofen, V., Kovacs, R., Kuehn, S., Liebmann, J., Mertens, N., Niemann, U., Oplaender, C., Porteanu, H.-E., Scherer, J., Suschek, C., Vioel, W. and Wandke, D. (2009) Biological Stimulation of the Human Skin Applying Health Promoting Light and Plasma Sources. Contributions to Plasma Physics, 49, 641-647.
http://dx.doi.org/10.1002/ctpp.200910068
[7] Kuchenbecker, M., Bibinov, N., Kaemling, A., Wandke, D., Awakowicz, P. and Viöl, W. (2009) Characterization of DBD Plasma Source for Biomedical Applications. Journal of Physics D: Applied Physics, 42, Article ID: 045212. http://dx.doi.org/10.1088/0022-3727/42/4/045212
[8] Fridman, G., Peddinghaus, M., Ayan, H., Fridman, A., Balasubramanian, M., Gutsol, A., Brook, A. and Friedman, G. (2006) Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air. Plasma Chemistry and Plasma Processing, 26, 425-442.
http://dx.doi.org/10.1007/s11090-006-9024-4
[9] Helmke, A., Grünig, P., Fritz, U-M., Wandke, D., Emmert, S., Petersen, K. and Viöl, W. (2012) Low-Temperature Plasma—A Prospective Microbicidal Tool. Recent Patents on Anti-Infective Drug Discovery, 7, 223-230. http://dx.doi.org/10.2174/157489112803521995
[10] Helmke, A., Hoffmeister, D., Berge, F., Emmert, S., Laspe, P., Mertens, N., Viöl, W. and Weltmann, K.-D. (2011) Physical and Microbiological Characterisation of Staphylococcus Epidermidis Inactivation by Dielectric Barrier Discharge Plasma. Plasma Processes and Polymers, 8, 278-286.
http://dx.doi.org/10.1002/ppap.201000168
[11] Claiborne, D., McCombs, G., Lemaster, M., Akman, M. and Laroussi, M. (2014) Low-Temperature Atmospheric Pres- sure Plasma Enhanced Tooth Whitening: The Next-Generation Technology. International Journal of Dental Hygiene, 12, 108-114.
http://dx.doi.org/10.1111/idh.12031
[12] Kalghatgi, S., Fridman, G., Cooper, M., Nagaraj, G., Peddinghaus, M., Balasubramanian, M., Vasilets, V., Gutsol, A., Fridman, A. and Friedman, G. (2007) Mechanism of Blood Coagulation by Nonthermal Atmospheric Pressure Dielectric Barrier Discharge Plasma. IEEE Transactions on Plasma Science, 35, 1559-1566.
http://dx.doi.org/10.1109/TPS.2007.905953
[13] Jung, J., Yang, Y., Lee, D., Fridman, G., Fridman, A. and Cho, Y. (2011) Effect of Dielectric Barrier Discharge Treat- ment of Blood Plasma to Improve Rheological Properties of Blood. Plasma Chemistry and Plasma Processing, 32, 165-176.
http://dx.doi.org/10.1007/s11090-011-9336-x
[14] Fridman, G., Shereshevsky, A., Jost, M., Brooks, A., Fridman, A., Gutsol, A., Vasilets, V. and Friedman, G. (2007) Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines. Plasma Chemistry and Plasma Processing, 27, 163-176.
http://dx.doi.org/10.1007/s11090-007-9048-4
[15] Barekzi, N. and Laroussi, M. (2012) Dose-Dependent Killing of Leukemia Cells by Low-Temperature Plasma. Journal of Physics D: Applied Physics, 45, Article ID: 422002.
[16] Helmke, A., Hoffmeister, D., Mertens, N., Emmert, S., Schütte, J. and Viöl, W. (2009) The Acidification of Lipid Film Surfaces by Non-Thermal DBD at Atmospheric Pressure in Air. New Journal of Physics, 11, Article ID: 115025.
[17] Marschewski, M., Hirschberg, J., Omairi, T., H?fft, O., Vi?l, W., Emmert, S. and Maus-Friedrichs, W. (2012) Electron Spectroscopic Analysis of the Human Lipid Skin Barrier: Cold Plasma-Induced Changes in Lipid Composition. Experimental Dermatology, 21, 921-925.
http://dx.doi.org/10.1111/exd.12043
[18] Lademann, J., Richter, H., Alborova, A., Humme, D. and Patzelt, A. (2009) Risk Assessment of the Application of a Plasma Jet in Dermatology. Journal of Biomedical Optics, 14, Article ID: 054025.
http://dx.doi.org/10.1117/1.3247156
[19] Robert, E., Vandamme, M., Brullé, L., Lerondel, S., Le Pape, A., Sarron, V., Riès, D., Darny, T., Dozias, S., Collet, G. Kieda, C. and Pouvesle, J.M. (2013) Perspectives of Endoscopic Plasma Applications. Clinical Plasma Medicine, 1, 8- 16.
http://dx.doi.org/10.1016/j.cpme.2013.10.002
[20] Jungersted, J., Hellgren, L., Drachmann, T., Jemec, G. and Agner, T. (2010) Validation of Cyanoacrylate Method for Collection of Stratum Corneum in Human Skin for Lipid Analysis. Skin Pharmacology and Physiology, 23, 62-67.
[21] Hirschberg, J., Omairi, T., Mertens, N., Helmke, A., Emmert, S. and Vi?l, W. (2013) Influence of Excitation Pulse Duration of Dielectric Barrier Discharges on Biomedical Applications. Journal of Physics D: Applied Physics, 46, Article ID: 165201.
[22] Ayan, H., Fridman, G., Gutsol, A., Vasilets, V., Fridman, A. and Friedman, G. (2008) Nanosecond-Pulsed Uniform Dielectric-Barrier Discharge. IEEE Transactions on Plasma Science, 36, 504-508.
http://dx.doi.org/10.1109/TPS.2008.917947
[23] Ayan, H., Staack, D., Fridman, G., Gutsol, A., Mukhin, Y., Starikovskii, A., Fridman, A. and Friedman, G. (2009) Application of Nanosecond-Pulsed Dielectric Barrier Discharge for Biomedical Treatment of Topographically Non-Uni- form Surfaces. Journal of Physics D: Applied Physics, 42, Article ID: 125202.
http://dx.doi.org/10.1088/0022-3727/42/12/125202
[24] Merle, C., Laugel, C. and Baillet-Guffroy, A. (2010) Effect of UVA or UVB Irradiation on Cutaneous Lipids in Films or in Solution. Photochemistry and Photobiology, 86, 553-562.
http://dx.doi.org/10.1111/j.1751-1097.2009.00690.x
[25] Tiede, R., Hirschberg, J., Daeschlein, G., von Woedtke, T., Vioel, W. and Emmert, S. (2014) Plasma Applications: A Dermatological View. Contributions to Plasma Physics, 54, 118-130.
http://dx.doi.org/10.1002/ctpp.201310061
[26] Jabs, H-U. (2013) Stratum Corneum—From Corneobiochemistry to Corneotherapy. Ästhetische Dermatologie, 1, 14- 19.
[27] Stuecker, M., Struk, A., Altmeyer, P., Herde, M., Baumgaertl, H. and Luebbers, D.W. (2002) The Cutaneous Uptake of Atmospheric Oxygen Supply of Human Dermis and Epidermis. Journal of Physiology, 538, 985-994. http://dx.doi.org/10.1113/jphysiol.2001.013067
[28] Mertens, N. (2009) Low Temperature Plasma Treatment of Human Tissue. Proceedings of the 2nd International Conference on Plasma Medicine, San Antonio, 16-20 March 2009.
[29] Nielsen, K., Zhao, L., Stamnes, J., Stamnes, K. and Moan, J. (2008) The Optics of Human Skin: Aspects Important for Human Health. Norwegian Academy of Science and Letters, Oslo, 34-46.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.