Share This Article:

Photochemical Efficiency during the Establishment and Consolidation Phases of in Vitro Pinus radiata Micrograft Made from Scions of Different Ontogenetic Age

Abstract Full-Text HTML XML Download Download as PDF (Size:2921KB) PP. 228-239
DOI: 10.4236/ajps.2015.61026    2,974 Downloads   3,316 Views   Citations

ABSTRACT

The aim of the present study was to evaluate the applicability of maximal photochemical efficiency of photosystem II (Fv/Fm) as an early estimate of P. radiata micrografts viability coming from different position (basal vs. apical) in the ortets. We hypothesize that Fv/Fm variation is a good indicator of micrograft’s viability and phenological stage during micrograft development. The micrografts were established in QL medium supplemented whit 0.1 mg·L-1 IBA and 1 mg·L-1 BAP and cultured at 25°C ± 2°C and 80 μmol photons m-2s-1 of photosynthetic active radiation by 16 h per day. During the establishment and consolidation phase, we found significant differences in Fv/Fm with respect to time and buds positions provenience. During establishment, basal shoot tips have lower Fv/Fm than apical shoot tips, which agrees with the lowest viability (35%). However, during the consolidation phase, the trend changed and basal shoot tips presented higher Fv/Fm than apical shoot tips and showed an increase in ETR and NPQ, with respect to apical shoots and ortet. Although the measurement of fluorescence parameters implies the insertion of the fluorometer sonde in vitro, this implies aseptic considerations, but always conveies a contamination risk. We conclude that fluorescence (Fv/Fm, ETR, NPQ) can be indicators of the micrograft’s development according to the shoot tips position in the ortet and can be useful early-indicators of the scions’ physiological condition during micrograft transition from establishment to consolidation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Materán, M. , Sáez, P. , Sánchez-Olate, M. , Bravo, L. , Rodríguez, R. , Ríos, D. and Coopman, R. (2015) Photochemical Efficiency during the Establishment and Consolidation Phases of in Vitro Pinus radiata Micrograft Made from Scions of Different Ontogenetic Age. American Journal of Plant Sciences, 6, 228-239. doi: 10.4236/ajps.2015.61026.

References

[1] Menzies, M.I., Holden, D.G. and Klomp, B.K. (2001) Recent Trends in Nursery Practice in New Zealand. New Forests, 22, 3-17. http://dx.doi.org/10.1023/A:1012027013173
[2] Valledor, L., Hasbún, R., Meijón, M., Rodríguez, J., Santamaría, E., Berdasco, M., Feito, I., Fraga, M., Cañal, M. and Rodríguez, R. (2007) Involvement of DNA Methylation in Tree Development and Micropropagation. Plant Cell, Tissue and Organ Culture, 91, 75-86. http://dx.doi.org/10.1007/s11240-007-9262-z
[3] Fraga, M., Cañal, M., Aragonés, A. and Rodríguez, R. (2002) Factors Involved in Pinus radiata D. Don. Micrografting. Annals of Forest Science, 59, 151-157. http://dx.doi.org/10.1051/forest:2002002
[4] Rodríguez, R., Fernández, M., Pacheco, J. and Cañal, M. (2005) Envejecimiento vegetal, una barrera a la propagación. Alternativas. In: Sánchez, M. and Ríos, D., Eds., Biotecnología vegetal en especies leñosas de interés forestal, Concepción, Chile, 29-48.
[5] Cortizo, M., Alonso P., Fernández, B., Rodríguez, A., Centeno, M. and Ordás, R. (2004) Micrografting of Mature Stone Pine (Pinus pinea L.) Trees. Annals of Forest Science, 61, 843-845.
http://dx.doi.org/10.1051/forest:2004081
[6] Fraga, M., Cañal, M. and Rodríguez, R. (2002) Phase-Change Related Epigenetic and Physiological Changes in Pinus radiata D. Don. Planta, 215, 672-678. http://dx.doi.org/10.1007/s00425-002-0795-4
[7] Sánchez-Olate, M., Zapata, J., Sáez, P., Ríos, D., Spiercolli, S., álvarez, C., Delaveau, C. and Pereira, G. (2008) Competencia morfogénica de embriones maduros de Pinus radiata cultivados in Vitro y su relación con la posición del cono en el árbol. Bosque, 29, 212-216.
[8] Greenwood, M., Cui, X. and Xu, F. (2001) Response to Auxin Changes during Maturation-Related Loss of Adventitious Rooting Competence in Loblolly Pine (Pinus taeda) Stem Cuttings. Physiologia Plantarum, 111, 373-380. http://dx.doi.org/10.1034/j.1399-3054.2001.1110315.x
[9] Danthu, P., Hane, B., Sagna, P. and Gassama, Y. (2002) Restoration of Rooting Competence in Mature Faidherbia albida, a Sahelian Leguminous Tree, through Serial Root Sucker Micrografting. New Forests, 24, 239-244. http://dx.doi.org/10.1023/A:1021396814374
[10] Onay, A., Pirinc, V., Yildirim, H. and Basaran, D. (2004) In Vitro Micrografting of Mature Pistachio (Pistacia vera var. Siirt). Plant Cell Tissueand Organ Culture, 77, 215-219.
http://dx.doi.org/10.1023/B:TICU.0000016822.71264.68
[11] Yildirima, H., Onayb, A., Süzererb, V., Tilkatc, E., Ozden-Tokatlid, Y. and Akdemird, H. (2010) Micrografting of Almond (Prunus dulcis Mill.) Cultivars “Ferragnes” and “Ferraduel”. Scientia Horticulturae, 125, 361-367. http://dx.doi.org/10.1016/j.scienta.2010.04.022
[12] Materán, M., Vega, M., Sánchez-Olate, M., Sáez, K., Rodríguez, R. and Ríos, D. (2008) Reactivación de material vegetal élite de Pinus radiata D. Don. mediante microinjerto in vitro. Interciencia, 33, 66-70.
[13] Valdés, A., Fernández, B. and Centeno, M. (2004) Hormonal Changes Throughout Maturation and Ageing in Pinus pinea. Plant Physiology and Biochemistry, 42, 335-340.
http://dx.doi.org/10.1016/j.plaphy.2004.02.004
[14] Valdés, A., Centeno, M. and Fernández, B. (2004) Age-Related Changes in the Hormonal Status of Pinus radiata Needle Fascicle Meristems. Plant Science, 167, 373-378.
http://dx.doi.org/10.1016/j.plantsci.2004.04.006
[15] Coopman, R.E., Reyes-Díaz, M., Briceño, V., Corcuera, L., Cabrera, H. and Bravo, L.A. (2008) Changes during Early Development in Photosynthetic Light Acclimation Capacity Explain the Shade to Sun Transition in Nothofagus nitida. Tree Physiology, 28, 1561-1571.
http://dx.doi.org/10.1093/treephys/28.10.1561
[16] Coopman, R.E., Briceño, V.F., Corcuera, L.J., Bravo, L.A., Reyes-Díaz, M., Alvarez, D., Sáez, K., García-Plazaola, J.I. and Alberdi, M. (2011) Size and Light Availability Increase Photochemical Instead Non-Photochemical Capacities of N. nitida Trees Growing in an Evergreen Temperate Rain Forest. Tree Physiology, 31, 1128-1141. http://dx.doi.org/10.1093/treephys/tpr094
[17] Flexas, J., Bota, J., Escalona, J., Sampol, M. and Medrano, H. (2002) Effects of Drought on Photosynthesis in Grapevines under Field Conditions: An Evaluation of Stomatal and Mesophyll Limitations. Functional Plant Biology, 29, 461-471. http://dx.doi.org/10.1071/PP01119
[18] Baker, N.R. and Rosenqvist, E. (2004) Applications of Chlorophyll Fluorescence Can Improve Crop Production Strategies: An Examination of Future Possibilities. Journal of Experimental Botany, 55, 1607-1621. http://dx.doi.org/10.1093/jxb/erh196
[19] Flexas, J. and Medrano, H. (1999) Water Stress Induces Different Levels of Photosynthesis and Electron Transport Rate Regulation in Grapevines. Plant, Cell & Environment, 22, 39-48.
http://dx.doi.org/10.1046/j.1365-3040.1999.00371.x
[20] Murchie, E.H. and Lawson, T. (2013) Chlorophyll Fluorescence Analysis: A Guide to Good Practice and Understanding Some New Applications. Journal of Experimental Botany, 13, 3983-3998.
http://dx.doi.org/10.1093/jxb/ert208
[21] Maxwell, K. and Johnson, G. (2000) Chlorophyll Fluorescence a Practical Guide. Journal of Experimental Botany, 51, 659-668. http://dx.doi.org/10.1093/jexbot/51.345.659
[22] Krause, H. and Weis, W. (1991) Chlorophyll Fluorescence and Photosynthesis: The Basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313-349.
http://dx.doi.org/10.1146/annurev.pp.42.060191.001525
[23] Baker, N.R. (2008) Chlorophyll Fluorescence: A Probe of Photosynthesis in Vivo. Annual Review of Plant Biology, 59, 89-113. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092759
[24] Genty, B., Briantais, J. and Baker, N. (1989) The Relationship between the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence. Biochimicaet Biophysica Acta, 990, 87-92.
[25] Genty, B., Harbinson, J. and Baker, N. (1990) Relative Quantum Efficiencies of the Two Photosystems of Leaves in Photorespiratory and Non-Photorespiratory Conditions. Plant Physiology and Biochemistry, 28, 1-10.
[26] álvarez, C., Sáez, P., Sánchez-Olate, M. and Ríos, D. (2012) Effects of Light and Ventilation on Physiological Parameters during in Vitro Acclimatization of Gevuina avellana Mol. Plant Cell, Tissue and Organ Culture, 108, 1-9.
[27] Carvalho, L., Osòrio, M., Chaves, M. and Amancio, S. (2001) Chlorophyll Fluorescence as an Indicator of Photosynthetic Functioning of in Vitro Grapevine and Chestnut Plantlets under ex Vitro Acclimatization. Plant Cell, Tissue and Organ Culture, 67, 271-280. http://dx.doi.org/10.1023/A:1012722112406
[28] Sáez, P., Bravo, L., Sáez, K., Sánchez-Olate, M., Latsague, M. and Ríos, D. (2012) Photosynthetic and Leaf Anatomical Characteristics of Castanea sativa: A Comparison between in Vitro and Nursery Plants. Biologia Plantarum, 56, 15-24. http://dx.doi.org/10.1007/s10535-012-0010-9
[29] Sáez, P., Bravo, L., Sánchez-Olate, M., Latsague, M. and Ríos, D. (2012) Increased Light Intensity during in Vitro Culture Improves Water Loss Control and Photosynthetic Performance of Castanea sativa Grown in Ventilated Vessels. Scientia Horticulturae, 138, 7-16. http://dx.doi.org/10.1016/j.scienta.2012.02.005
[30] Huang, L., Weng, J., Wang, C., Kuo, C. and Shieh, Y. (2003) Photosynthetic Potential of in Vitro-Grown Juvenile, Adult, and Rejuvenated Sequoia sempervirens (D. Don) Endl. Shoots. Botanical Bulletin Academia Sinica, 44, 31-35.
[31] Sáez, P., Bravo, L., Sánchez-Olate, M., Latsague, M., Toneatti, M. and Ríos, D. (2013) Light Energy Management in Micropropagated Plants of Castanea sativa, Effects of Photoinhibition. Plant Science, 201, 12-24. http://dx.doi.org/10.1016/j.plantsci.2012.11.008
[32] Quoirin, M. and Lepoivre, P. (1997) étude de milieux adpaté aux cultures in vitre de Prunus. Acta Horticulturae, 7, 437-442.
[33] Van Kooten, O. and Snel, J.F.H. (1990) The Use of Chlorophyll Fluorescence Nomenclature in Plant Stress Physiology. Photosynthesis Research, 25,147-150. http://dx.doi.org/10.1007/BF00033156
[34] McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models (Chapman & Hall/CRC Monographs on Statistics & Applied Probability). 2nd Edition, Chapman and Hall/CRC, UK.
[35] Quinn, G. and Keough, M. (2006) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Edinburgh.
[36] Uribe, M., Delaveau, C., Garcés, M. and Escobar, R. (2008) Effect of Asepsis and Phytohormones on the in Vitro Establishment of Berberidopsis corallina from Nodal Segments. Bosque, 29, 58-64.
[37] Valdés, A., Fernández, B. and Centeno, M. (2003) Alteration in Endogenous Levels of Cytokinins Following Grafting of Pinus radiata Support Ratio of Cytokinins as an Index of Ageing and Vigour. Journal of Plant Physiology, 160, 1407-1410. http://dx.doi.org/10.1078/0176-1617-00992
[38] Materán, M., Fernández, M., Valenzuela, S., Sáez, K., Seemann, P., Sánchez-Olate, M. and Ríos, D. (2009) Abscisic Acid and 3-Indolacetic Acid Levels during the Reinvigoration Process of Pinus radiata D. Don Adult Material. Plant Growth Regulation, 59,171-177. http://dx.doi.org/10.1007/s10725-009-9400-1
[39] Pastenes, C., Pimentel, P. and Lillo, J. (2005) Leaf Movements and Photoinhibition in Relation to Water Stress in Field-Grown Beans. Journal of Experimental Botany, 56, 425-433.
http://dx.doi.org/10.1093/jxb/eri061
[40] Valero-Aracama, C., Kane, M., Wilson, S., Anderson, V. and Philman, N. (2006) Photosynthetic and Carbohydrate Status of Easy and Difficult-to-Acclimatize Sea Oats (Uniola paniculata L.) Genotypes during in Vitro Culture and ex Vitro Acclimatization. In Vitro Cellular & Developmental Biology-Plant, 42, 572-583. http://dx.doi.org/10.1079/IVP2006822
[41] Demmig-Adams, B. and Adams III, W.W. (1996) Xanthophyll Cycle and Light Stress in Nature: Uniform Response to Excess Direct Sunlight among Higher Plant Species. Planta, 198, 460-470.
http://dx.doi.org/10.1007/BF00620064
[42] Horton, P., Ruban, A.V. and Walters, R.G. (1996) Regulation of Light Harvesting in Green Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 655-684.
http://dx.doi.org/10.1146/annurev.arplant.47.1.655
[43] Valdés, A., Centeno, M., Espinel, S. and Fernández, B. (2002) Could Plant Hormones Be the Basis of Maturation Indices in Pinus radiata? Plant Physiology and Biochemistry, 40, 211-216.
http://dx.doi.org/10.1016/S0981-9428(02)01371-2

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.