Share This Article:

Evaluation of the Eta Simulations Nested in Three Global Climate Models

Abstract Full-Text HTML XML Download Download as PDF (Size:11769KB) PP. 438-454
DOI: 10.4236/ajcc.2014.35039    4,573 Downloads   5,835 Views   Citations


To provide long-term simulations of climate change at higher resolution, Regional Climate Models (RCMs) are nested in global climate models (GCMs). The objective of this work is to evaluate the Eta RCM simulations driven by three global models, the HadGEM2-ES, BESM, and MIROC5, for the present period, 1961-1990. The RCM domain covers South America, Central America, and Caribbean. These simulations will be used for assessment of climate change projections in the region. Maximum temperatures are generally underestimated in the domain, in particular by MIROC5 driven simulations, in summer and winter seasons. Larger spread among the simulations was found in the minimum temperatures, which showed mixed signs of errors. The spatial correlations of temperature simulations against the CRU observations show better agreement for the MIROC5 driven simulations. The nested simulations underestimate precipitation in large areas over the continent in austral summer, whereas in winter overestimate occurs in southern Amazonia, and underestimate in southern Brazil and eastern coast of Northeast Brazil. The annual cycle of the near-surface temperature is underestimated in all model simulations, in all regions in Brazil, and in most of the year. The temperature and precipitation frequency distributions reveal that the RCM and GCM simulations contain more extreme values than the CRU observations. Evaluations of the climatic extreme indicators show that in general hot days, warm nights, and heat waves are increasing in the period, in agreement with observations. The Eta simulations driven by HadGEM2-ES show wet trends in the period, whereas the Eta driven by BESM and by MIROC5 show trends for drier conditions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Chou, S. , Lyra, A. , Mourão, C. , Dereczynski, C. , Pilotto, I. , Gomes, J. , Bustamante, J. , Tavares, P. , Silva, A. , Rodrigues, D. , Campos, D. , Chagas, D. , Sueiro, G. , Siqueira, G. , Nobre, P. and Marengo, J. (2014) Evaluation of the Eta Simulations Nested in Three Global Climate Models. American Journal of Climate Change, 3, 438-454. doi: 10.4236/ajcc.2014.35039.


[1] IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, 996.
[2] IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, 1535.
[3] Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C. and Rummukainen, M. (2013) The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, Chapter 9, 741-866.
[4] Veljovic, K., Rajkovic, B., Fennessy, M.J., Altshuler, E.L. and Mesinger, F. (2010) Regional Climate Modeling: Should One Attempt Improving on the Large Scales? Lateral Boundary Condition Scheme: Any Impact? Meteor Zeitschrift, 19, 237-246.
[5] Laprise, R., de Elía, R., Caya, D., et al. (2008) Challenging Some Tenets of Regional Climate Modelling. Meteoroly and Atmospheric Physics, 100, 3-22.
[6] Chou, S.C., Marengo, J.A., Lyra, A.A., et al. (2012) Downscaling of South America Present Climate Driven by 4-Member HadCM3 Runs. Climate Dynamics, 38, 635-653.
[7] Solman, S.A., Sanchez, E., Samuelsson, P., et al. (2013) Evaluation of an Ensemble of Regional Climate Model Simulations over South America Driven by the ERA-Interim Reanalysis: Model Performance and Uncertainties. Climate Dynamics, 41, 1139-1157.
[8] Simmons, A., Uppala, S., Dee, D. and Kobayashi, S. (2007) ERA-Interim: New ECMWF Reanalysis Products from 1989 Onwards. ECMWF News, 110, 25-35.
[9] INMET (2009) Normais Climatológicas do Brasil (1961-1990) Reeditado e Ampliado, organizadores: Andrea Malheiros Ramos, Luiz Andre Rodrigues dos Santos, Lauro Tadeu Guimaraes Fortes. Brasília, DF, 465 p.
[10] Chou, S.C., Lyra, A., Mourao, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., et al. (2014) Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. American Journal of Climate Change.
[11] Nobre, P., Siqueira, L.S.P., de Almeida, R.A.F., Malagutti, M., Giarolla, E., Castelao, G.P., et al. (2013) Climate Simulation and Change in the Brazilian Climate Model. Journal of Climate, 26, 6716-6732.
[12] Griffies, S.M. (2009) Elements of MOM4p1. NOAA/Geophysical Fluid Dynamics Laboratory Ocean Group Technical Report No. 6, 444.
[13] Xue, Y., Sellers, P.J., Kinter, J.L. and Shukla, J. (1991) A Simplified Biosphere Model for Global Climate Studies. Journal of Climate, 4, 345-364.<0345:ASBMFG>2.0.CO;2
[14] Winton, M. (2000) A Reformulated Three-Layer Sea Ice Model. Journal of Atmospheric and Oceanic Technology, 17, 525-531.<0525:ARTLSI>2.0.CO;2
[15] Tarasova, T.A., Barbosa, H.M.J. and Figueroa, S.N. (2006) Incorporation of New Solar Radiation Scheme into CPTEC GCM. Instituto Nacional de Pesquisas Espaciais Technical Report, INPE-14052-NTE/371, 44.
[16] Chou, M.D. and Suarez, M.J. (1999) A Solar Radiation Parameterization (CLIRAD-SW) for Atmospheric Studies. NASA Tech. Memo NASA/TM-1999-104606, 40.
[17] Harshvardhan, Davies, R., Randall, D.A. and Corsetti, T.G. (1987) A Fast Radiation Parameterization for General Circulation Models. Journal of Geophysical Research, 92, 1009-1016.
[18] Grell, G.A. and Devenyi, D. (2002) A Generalized Approachto Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophysical Research Letters, 29, 38-1-38-4.
[19] Tiedtke, M. (1984) The Sensitivity of the Time Mean Large-Scale Flow to Cumulus Convection in the ECMWF Model. Workshop on Convection in Large-Scale Numerical Models, Reading, United Kingdom, ECMWF, 297-316.
[20] Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., et al. (2011) Development and Evaluation of an Earth-System Model-HadGEM2. Geoscientific Model Development, 4, 1051-1075.
[21] Martin, G.M., Bellouin, N., Collins, W.J., Culverwell, I.D., Halloran, P.R., Hardiman, S.C., et al. (2011) The HadGEM2 Family of Met Office Unified Model Climate Configurations. Geoscientific Model Development, 4, 723-757.
[22] Cox, P.M. (2001) Description of the “TRIFFID” Dynamic Global Vegetation Model. Hadley Centre Technical Note 24, Met Office, UK.
[23] Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., et al. (2010) Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity. Journal of Climate, 23, 6312-6335.
[24] Hasumi, H. (2007) CCSR Ocean Component Model (COCO), Version 4.0. CCSR Report, Centre for Climate System Research.
[25] Sekiguchi, M. and Nakajim, T. (2008) A k-Distribution-Based Radiation Code and Its Computational Optimization for an Atmospheric General Circulation Model. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 2779-2793.
[26] Takata, K., Emori, S. and Watanabe, T. (2003) Development of the Minimal Advanced Treatments of Surface Interaction and Runoff. Global and Planetary Change, 38, 209-222.
[27] Mesinger, F. (1984) A Blocking Technique for Representation of Mountains in Atmospheric Models. Rivista di Meteorologia Aeronautica, 44, 195-202.
[28] Janjic, Z.I. (1984) Nonlinear Advection Schemes and Energy Cascade on Semi-Staggered Grids. Monthly Weather Review, 112, 1234-1245.<1234:NASAEC>2.0.CO;2
[29] Mesinger, F., Chou, S.C., Gomes, J.L., Jovic, D., Bastos, P., Bustamante, J.F., et al. (2012) An Upgraded Version of the Eta Model. Meteorology and Atmospheric Physics, 116, 63-79.
[30] Betts, A.K. and Miller, M.J. (1986) A New Convective Adjustment Scheme. Part II: Single Column Tests Using GATE Wave, BOMEX, ATEX and Arctic Air-Mass Data Sets. Quarterly Journal of the Royal Meteorological Society, 112, 693-709.
[31] Janjic, Z.I. (1994) The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 122, 927-945.<0927:TSMECM>2.0.CO;2
[32] Zhao, Q., Black, T.L. and Baldwin, M.E. (1997) Implementation of the Cloud Prediction Scheme in the Eta Model at NCEP. Weather and Forecasting, 12, 697-712.<0697:IOTCPS>2.0.CO;2
[33] Ek, M., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G. and Tarpley, J.D. (2003) Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. Journal of Geophysical Research, 108, 8851.
[34] Lacis, A.A. and Hansen, J. (1974) A Parameterization for the Absorption of Solar Radiation in the Earth’s Atmosphere. Journal of the Atmospheric Sciences, 31, 118-133.<0118:APFTAO>2.0.CO;2
[35] Fels, S.B. and Schwarzkopf, M.D. (1975) The Simplified Exchange Approximation: A New Method for Radiative Transfer Calculations. Journal of the Atmospheric Sciences, 32, 1475-1488.<1475:TSEAAN>2.0.CO;2
[36] Chou, S.C. (1996) Modelo Regional Eta. Climanalise. Vol. 1, Especial Edition, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos.
[37] Chou, S.C., Bustamante, J.F. and Gomes, J.L. (2005) Evaluation of Eta Model Seasonal Precipitation Forecasts over South America. Nonlinear Processes in Geophysics, 12, 537-555.
[38] MCT (2010) Second National Communication of Brazil to the United Nations Framework Convention on Climate Change. Ministerio da Ciencia e Tecnologia, Brasília.
[39] Pesquero, J.F., Chou, S.C., Nobre, C.A. and Marengo, J.A. (2009) Climate Downscaling over South America for 1961-1970 Using the Eta Model. Theoretical and Applied Climatology, 99, 75-93.
[40] Marengo, J.A., Chou, S.C., Kay, G., Alves, L.M., Pesquero, J.F., Soares, W.R., et al. (2012) Development of Regional Future Climate Change Scenarios in South America Using the Eta CPTEC/HadCM3 Climate Change Projections: Climatology and Regional Analyses for the Amazon, Sao Francisco and the Parana River Basins. Climate Dynamics, 38, 1829-1848.
[41] Matos, A.C., Dereczynski, C.P., Chou, S.C. and Palmeira, R. (2012) Investigacao do comportamento dos ciclones no clima futuro a partir do modelo regional Eta-HadCM3. Anais do XVII Congresso Brasileiro de Meteorologia, Gramado, RS, September, 2012, 1-5.
[42] Resende, N.C., Giarolla, A., Rodrigues, D.C., Tavares, P. and Chou, S.C. (2011) Ocorrencia da doenca ferrugem-docafe (Hemileia vastatrix) em algumas regioes de Sao Paulo, baseada nas projecoes climaticas do modelo Eta/CPTEC (Cenario A1B-IPCC/SRES). XVII Congresso Brasileiro de Agrometeorologia, Guarapari-ES, July 2011, 1.
[43] Rodrigues, D.C., Tavares, P., Giarolla, A., Chou, S.C., Resende, N.C. and De Camargo, M.B.P. (2011) Estimativa da ocorrencia de temperatura maximamaior que 34°C durante o florescimento e maturacao do cafeeiro baseado no modelo Eta/CPTEC 40km (cenario A1B). XVII Congresso Brasileiro de Agrometeorologia, Guarapari-ES, July 2011, 1.
[44] Mitchell, T.D. and Jones, P.D. (2005) An Improved Method of Constructing a Database of Monthly Climate Observations and Associated High-Resolution Grids. International Journal of Climatology, 25, 693-712.
[45] Frich, P., Alexander, L.V., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A.M.G. and Peterson, T. (2002) Observed Coherent Changes in Climatic Extremes during the Second Half of the Twentieth Century. Climate Research, 19, 193-212.
[46] Vincent, L.A., Peterson, T.C., Barros, V.R., Marino, M.B., Rusticucci, M., Carrasco, G., et al. (2005) Observed Trends in Indices of Daily Temperature Extremes in South America 1960-2000. Journal of Climate, 18, 5011-5023.
[47] Skansi, M.M., Brunet, M., Sigró, J., Aguilar, E., Arevalo Groening, J.A., Bentancur, O.J., et al. (2013) Warming and Wetting Signals Emerging from Analysis of Changes in Climate Extreme Indices over South America. Global and Planetary Change, 100, 295-307.
[48] Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G., et al. (2006) Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. Journal of Geophysical Research, 111, Article ID: D05109.
[49] Marengo, J.A., Rusticucci, M., Penalba, O. and Renom, M. (2010) An Intercomparison of Observed and Simulated Extreme Rainfall and Temperature Events during the Last Half of the Twentieth Century: Part 2: Historical Trends. Climatic Change, 98, 509-529.
[50] Haylock, M.R., Peterson, T.C., Alves, L.M., Ambrizzi, T., Anunciacao, Y.M.T., Baez, J., et al. (2006) Trends in Total and Extreme South American Rainfall in 1960-2000 and Links with Sea Surface Temperature. Journal of Climate, 19, 1490-1512.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.