Share This Article:

The P2Y2 Receptor Interacts with VE-Cadherin and VEGF Receptor-2 to Regulate Rac1 Activity in Endothelial Cells

Abstract Full-Text HTML XML Download Download as PDF (Size:4146KB) PP. 1105-1121
DOI: 10.4236/jbise.2014.714109    3,043 Downloads   3,483 Views   Citations

ABSTRACT

Vascular endothelial cadherin (VE-cadherin) mediates homophylic adhesion between endothelial cells and is an important regulator of angiogenesis, blood vessel permeability and leukocyte trafficking. Rac1, a member of the Rho family of GTPases, controls VE-cadherin adhesion by acting downstream of several growth factors, including angiopoietin-1 and vascular endothelial growth factor (VEGF). Here we show that UTP-induced activation of the Gq protein-coupled P2Y2 nucleotide receptor (P2Y2R) in human coronary artery endothelial cells (HCAECs) activated Rac1 and caused a transient complex to form between P2Y2R, VE-cadherin and VEGF receptor-2 (VEGFR-2). Knockdown of VE-cadherin expression with siRNA did not affect UTP-induced activation of extracellular signal-regulated kinases 1/2 (ERK1/2) but led to a loss of UTP-induced Rac1 activation and tyrosine phosphorylation of p120 catenin, a cytoplasmic protein known to interact with VE- cadherin. Activation of the P2Y2R by UTP also caused a prolonged interaction between p120 catenin and vav2 (a guanine nucleotide exchange factor for Rac) that correlated with the kinetics of UTP-induced tyrosine phosphorylation of p120 catenin and VE-cadherin. Inhibitors of VEGFR-2 (SU1498) or Src (PP2) significantly diminished UTP-induced Rac1 activation, tyrosine phosphorylation of p120 catenin and VE-cadherin, and association of the P2Y2R with VE-cadherin and p120 catenin with vav2. These findings suggest that the P2Y2R uses Src and VEGFR-2 to mediate association of the P2Y2R with VE-cadherin complexes in endothelial adherens junctions to activate Rac1.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Liao, Z. , Cao, C. , Wang, J. , Huxley, V. , Baker, O. , Weisman, G. and Erb, L. (2014) The P2Y2 Receptor Interacts with VE-Cadherin and VEGF Receptor-2 to Regulate Rac1 Activity in Endothelial Cells. Journal of Biomedical Science and Engineering, 7, 1105-1121. doi: 10.4236/jbise.2014.714109.

References

[1] Mehta, D. and Malik, A.B. (2006) Signaling Mechanisms Regulating Endothelial Permeability. Physiological Reviews, 86, 279-367.
http://dx.doi.org/10.1152/physrev.00012.2005
[2] Wojciak-Stothard, B. and Ridley, A.J. (2002) Rho GTPases and the Regulation of Endothelial Permeability. Vascular Pharmacology, 39, 187-199.
http://dx.doi.org/10.1016/S1537-1891(03)00008-9
[3] Spindler, V., Schlegel, N. and Waschke, J. (2010) Role of GTPases in Control of Microvascular Permeability. Cardiovascular Research, 87, 243-253.
http://dx.doi.org/10.1093/cvr/cvq086
[4] Beckers, C.M., van Hinsbergh, V.W. and van Nieuw Amerongen, G.P. (2010) Driving Rho GTPase Activity in Endothelial Cells Regulates Barrier Integrity. Thrombosis and Haemostasis, 103, 40-55.
http://dx.doi.org/10.1160/TH09-06-0403
[5] Harvey, J., Erb, L., Huxley, V., Weisman, G.A., Garrad, R. and Wang, J. (2012) P2Y2 Receptor Dependent Modulation of Microvascular Barrier Function. FASEB Journal, 26, Abstract 855.4.
[6] Seye, C.I., Kong, Q., Erb, L., Garrad, R.C., Krugh, B., Wang, M., Turner, J.T., Sturek, M., Gonzalez, F.A. and Weisman, G.A. (2002) Functional P2Y2 Nucleotide Receptors Mediate Uridine 5'-Triphosphate-Induced Intimal Hyperplasia in Collared Rabbit Carotid Arteries. Circulation, 106, 2720-2726.
http://dx.doi.org/10.1161/01.CIR.0000038111.00518.35
[7] Chen, Y., Corriden, R., Inoue, Y., Yip, L., Hashiguchi, N., Zinkernagel, A., Nizet, V., Insel, P.A. and Junger, W.G. (2006) ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors. Science, 314, 1792-1795.
http://dx.doi.org/10.1126/science.1132559
[8] Muller, T., Robaye, B., Vieira, R.P., Ferrari, D., Grimm, M., Jakob, T., Martin, S.F., Di Virgilio, F., Boeynaems, J.M., Virchow, J.C. and Idzko, M. (2010) The Purinergic Receptor P2Y2 Receptor Mediates Chemotaxis of Dendritic Cells and Eosinophils in Allergic Lung Inflammation. Allergy, 65, 1545-1553.
http://dx.doi.org/10.1111/j.1398-9995.2010.02426.x
[9] Cicko, S., Lucattelli, M., Muller, T., Lommatzsch, M., De Cunto, G., Cardini, S., Sundas, W., Grimm, M., Zeiser, R., Durk, T., Zissel, G., Boeynaems, J.M., Sorichter, S., Ferrari, D., Di Virgilio, F., Virchow, J.C., Lungarella, G. and Idzko, M. (2010) Purinergic Receptor Inhibition Prevents the Development of Smoke-Induced Lung Injury and Emphysema. Journal of Immunology, 185, 688-697.
http://dx.doi.org/10.4049/jimmunol.0904042
[10] Agca, C., Seye, C., Kashuba Benson, C.M., Rikka, S., Chan, A.W., Weisman, G.A. and Agca, Y. (2009) Development of a Novel Transgenic Rat Overexpressing the P2Y2 Nucleotide Receptor Using a Lentiviral Vector. Journal of Vascular Research, 46, 447-458.
http://dx.doi.org/10.1159/000194274
[11] Ajit, D., Woods, L.T., Camden, J.M., Thebeau, C.N., El-Sayed, F.G., Greeson, G.W., Erb, L., Petris, M.J., Miller, D.C., Sun, G.Y. and Weisman, G.A. (2014) Loss of P2Y2 Nucleotide Receptors Enhances Early Pathology in the TgCRND8 Mouse Model of Alzheimer’s Disease. Molecular Neurobiology, 49, 1031-1042.
http://dx.doi.org/10.1007/s12035-013-8577-5
[12] Schumacher, D., Strilic, B., Sivaraj, K.K., Wettschureck, N. and Offermanns, S. (2013) Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial Migration and Metastasis via P2Y2 Receptor. Cancer Cell, 24, 130-137.
http://dx.doi.org/10.1016/j.ccr.2013.05.008
[13] Liao, Z., Seye, C.I., Weisman, G.A. and Erb, L. (2007) The P2Y2 Nucleotide Receptor Requires Interaction with αv Integrins to Access and Activate G12. Journal of Cell Science, 120, 1654-1662.
http://dx.doi.org/10.1242/jcs.03441
[14] Bagchi, S., Liao, Z., Gonzalez, F.A., Chorna, N.E., Seye, C.I., Weisman, G.A. and Erb, L. (2005) The P2Y2 Nucleotide Receptor Interacts with αv Integrins to Activate Go and Induce Cell Migration. Journal of Biological Chemistry, 280, 39050-39057.
http://dx.doi.org/10.1074/jbc.M504819200
[15] Liu, J., Liao, Z., Camden, J., Griffin, K.D., Garrad, R.C., Santiago-Perez, L.I., Gonzalez, F.A., Seye, C.I., Weisman, G.A. and Erb, L. (2004) Src Homology 3 Binding Sites in the P2Y2 Nucleotide Receptor Interact with Src and Regulate Activities of Src, Proline-Rich Tyrosine Kinase 2, and Growth Factor Receptors. Journal of Biological Chemistry, 279, 8212-8218.
http://dx.doi.org/10.1074/jbc.M312230200
[16] Seye, C.I., Yu, N., Gonzalez, F.A., Erb, L. and Weisman, G.A. (2004) The P2Y2 Nucleotide Receptor Mediates Vascular Cell Adhesion Molecule-1 Expression through Interaction with VEGF Receptor-2 (KDR/Flk-1). Journal of Biological Chemistry, 279, 35679-35686.
http://dx.doi.org/10.1074/jbc.M401799200
[17] Wheelock, M.J. and Johnson, K.R. (2003) Cadherin-Mediated Cellular Signaling. Current Opinion in Cell Biology, 15, 509-514.
http://dx.doi.org/10.1016/S0955-0674(03)00101-7
[18] Breviario, F., Caveda, L., Corada, M., Martin-Padura, I., Navarro, P., Golay, J., Introna, M., Gulino, D., Lampugnani, M.G. and Dejana, E. (1995) Functional Properties of Human Vascular Endothelial Cadherin (7B4/Cadherin-5), an Endothelium-Specific Cadherin. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 1229-1239.
http://dx.doi.org/10.1161/01.ATV.15.8.1229
[19] Corada, M., Mariotti, M., Thurston, G., Smith, K., Kunkel, R., Brockhaus, M., Lampugnani, M.G., Martin-Padura, I., Stoppacciaro, A., Ruco, L., McDonald, D.M., Ward, P.A. and Dejana, E. (1999) Vascular Endothelial-Cadherin Is an Important Determinant of Microvascular Integrity in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 96, 9815-9820.
http://dx.doi.org/10.1073/pnas.96.17.9815
[20] Matsuyoshi, N., Toda, K., Horiguchi, Y., Tanaka, T., Nakagawa, S., Takeichi, M. and Imamura, S. (1997) In Vivo Evidence of the Critical Role of Cadherin-5 in Murine Vascular Integrity. Proceedings of the Association of American Physicians, 109, 362-371.
[21] Gotsch, U., Borges, E., Bosse, R., Boggemeyer, E., Simon, M., Mossmann, H. and Vestweber, D. (1997) VE-Cadherin Antibody Accelerates Neutrophil Recruitment in Vivo. Journal of Cell Science, 110, 583-588.
[22] Dejana, E., Bazzoni, G. and Lampugnani, M.G. (1999) Vascular Endothelial (VE)-Cadherin: Only an Intercellular Glue? Experimental Cell Research, 252, 13-19.
http://dx.doi.org/10.1006/excr.1999.4601
[23] Carmeliet, P., Lampugnani, M.G., Moons, L., Breviario, F., Compernolle, V., Bono, F., Balconi, G., Spagnuolo, R., Oostuyse, B., Dewerchin, M., Zanetti, A., Angellilo, A., Mattot, V., Nuyens, D., Lutgens, E., Clotman, F., de Ruiter, M.C., Gittenberger-de Groot, A., Poelmann, R., Lupu, F., Herbert, J.M., Collen, D. and Dejana, E. (1999) Targeted Deficiency or Cytosolic Truncation of the VE-Cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis. Cell, 98, 147-157.
http://dx.doi.org/10.1016/S0092-8674(00)81010-7
[24] Gory-Faure, S., Prandini, M.H., Pointu, H., Roullot, V., Pignot-Paintrand, I., Vernet, M. and Huber, P. (1999) Role of Vascular Endothelial-Cadherin in Vascular Morphogenesis. Development, 126, 2093-2102.
[25] Zanetta, L., Corada, M., Grazia Lampugnani, M., Zanetti, A., Breviario, F., Moons, L., Carmeliet, P., Pepper, M.S. and Dejana, E. (2005) Downregulation of Vascular Endothelial-Cadherin Expression Is Associated with an Increase in Vascular Tumor Growth and Hemorrhagic Complications. Thrombosis and Haemostasis, 93, 1041-1046.
[26] Rahimi, N. and Kazlauskas, A. (1999) A Role for Cadherin-5 in Regulation of Vascular Endothelial Growth Factor Receptor 2 Activity in Endothelial Cells. Molecular Biology of the Cell, 10, 3401-3407.
http://dx.doi.org/10.1091/mbc.10.10.3401
[27] Lampugnani, M.G., Zanetti, A., Breviario, F., Balconi, G., Orsenigo, F., Corada, M., Spagnuolo, R., Betson, M., Braga, V. and Dejana, E. (2002) VE-Cadherin Regulates Endothelial Actin Activating Rac and Increasing Membrane Association of Tiam. Molecular Biology of the Cell, 13, 1175-1189.
http://dx.doi.org/10.1091/mbc.01-07-0368
[28] Vincent, P.A., Xiao, K., Buckley, K.M. and Kowalczyk, A.P. (2004) VE-Cadherin: Adhesion at Arm’s Length. American Journal of Physiology: Cell Physiology, 286, C987-C997.
http://dx.doi.org/10.1152/ajpcell.00522.2003
[29] Noren, N.K., Liu, B.P., Burridge, K. and Kreft, B. (2000) p120 Catenin Regulates the Actin Cytoskeleton via Rho Family GTPases. Journal of Cell Biology, 150, 567-580.
http://dx.doi.org/10.1083/jcb.150.3.567
[30] Anastasiadis, P.Z., Moon, S.Y., Thoreson, M.A., Mariner, D.J., Crawford, H.C., Zheng, Y. and Reynolds, A.B. (2000) Inhibition of RhoA by p120 Catenin. Nature Cell Biology, 2, 637-644.
http://dx.doi.org/10.1038/35023588
[31] Grosheva, I., Shtutman, M., Elbaum, M. and Bershadsky, A.D. (2001) p120 Catenin Affects Cell Motility via Modulation of Activity of Rho-Family GTPases: A Link between Cell-Cell Contact Formation and Regulation of Cell Locomotion. Journal of Cell Science, 114, 695-707.
[32] Zanetti, A., Lampugnani, M.G., Balconi, G., Breviario, F., Corada, M., Lanfrancone, L. and Dejana, E. (2002) Vascular Endothelial Growth Factor Induces Shc Association with Vascular Endothelial Cadherin: A Potential Feedback Mechanism to Control Vascular Endothelial Growth Factor Receptor-2 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 617-622.
http://dx.doi.org/10.1161/01.ATV.0000012268.84961.AD
[33] Baumeister, U., Funke, R., Ebnet, K., Vorschmitt, H., Koch, S. and Vestweber, D. (2005) Association of Csk to VE-Cadherin and Inhibition of Cell Proliferation. EMBO Journal, 24, 1686-1695.
http://dx.doi.org/10.1038/sj.emboj.7600647
[34] Nawroth, R., Poell, G., Ranft, A., Kloep, S., Samulowitz, U., Fachinger, G., Golding, M., Shima, D.T., Deutsch, U. and Vestweber, D. (2002) VE-PTP and VE-Cadherin Ectodomains Interact to Facilitate Regulation of Phosphorylation and Cell Contacts. EMBO Journal, 21, 4885-4895.
http://dx.doi.org/10.1093/emboj/cdf497
[35] Schrader, A.M., Camden, J.M. and Weisman, G.A. (2005) P2Y2 Nucleotide Receptor Up-Regulation in Submandibular Gland Cells from the NOD.B10 Mouse Model of Sjogren’s Syndrome. Archives of Oral Biology, 50, 533-540.
http://dx.doi.org/10.1016/j.archoralbio.2004.11.005
[36] Mao, X., Kim, B.E., Wang, F., Eide, D.J. and Petris, M.J. (2007) A Histidine-Rich Cluster Mediates the Ubiquitination and Degradation of the Human Zinc Transporter, hZIP4, and Protects against Zinc Cytotoxicity. Journal of Biological Chemistry, 282, 6992-7000.
http://dx.doi.org/10.1074/jbc.M610552200
[37] Lampugnani, M.G., Orsenigo, F., Gagliani, M.C., Tacchetti, C. and Dejana, E. (2006) Vascular Endothelial Cadherin Controls VEGFR-2 Internalization and Signaling from Intracellular Compartments. Journal of Cell Biology, 174, 593-604.
http://dx.doi.org/10.1083/jcb.200602080
[38] Esser, S., Lampugnani, M.G., Corada, M., Dejana, E. and Risau, W. (1998) Vascular Endothelial Growth Factor Induces VE-Cadherin Tyrosine Phosphorylation in Endothelial Cells. Journal of Cell Science, 111, 1853-1865.
[39] Grazia Lampugnani, M., Zanetti, A., Corada, M., Takahashi, T., Balconi, G., Breviario, F., Orsenigo, F., Cattelino, A., Kemler, R., Daniel, T.O. and Dejana, E. (2003) Contact Inhibition of VEGF-Induced Proliferation Requires Vascular Endothelial Cadherin, Beta-Catenin, and the Phosphatase DEP-1/CD148. Journal of Cell Biology, 161, 793-804.
http://dx.doi.org/10.1083/jcb.200209019
[40] Iyer, S., Ferreri, D.M., DeCocco, N.C., Minnear, F.L. and Vincent, P.A. (2004) VE-Cadherin-p120 Interaction Is Required for Maintenance of Endothelial Barrier Function. American Journal of Physiology: Lung Cellular and Molecular Physiology, 286, L1143-L1153.
http://dx.doi.org/10.1152/ajplung.00305.2003
[41] Kukulski, F., Ben Yebdri, F., Bahrami, F., Fausther, M., Tremblay, A. and Sevigny, J. (2010) Endothelial P2Y2 Receptor Regulates LPS-Induced Neutrophil Transendothelial Migration in Vitro. Molecular Immunology, 47, 991-999.
http://dx.doi.org/10.1016/j.molimm.2009.11.020
[42] van Buul, J.D. and Hordijk, P.L. (2004) Signaling in Leukocyte Transendothelial Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 824-833.
http://dx.doi.org/10.1161/01.ATV.0000122854.76267.5c
[43] Huang, A.J., Manning, J.E., Bandak, T.M., Ratau, M.C., Hanser, K.R. and Silverstein, S.C. (1993) Endothelial Cell Cytosolic Free Calcium Regulates Neutrophil Migration across Monolayers of Endothelial Cells. Journal of Cell Biology, 120, 1371-1380.
http://dx.doi.org/10.1083/jcb.120.6.1371
[44] Vestweber, D. (2007) Adhesion and Signaling Molecules Controlling the Transmigration of Leukocytes through Endothelium. Immunological Reviews, 218, 178-196.
http://dx.doi.org/10.1111/j.1600-065X.2007.00533.x
[45] Muller, W.A. (2009) Mechanisms of Transendothelial Migration of Leukocytes. Circulation Research, 105, 223-230.
http://dx.doi.org/10.1161/CIRCRESAHA.109.200717
[46] Dejana, E., Orsenigo, F. and Lampugnani, M.G. (2008) The Role of Adherens Junctions and VE-Cadherin in the Control of Vascular Permeability. Journal of Cell Science, 121, 2115-2122.
http://dx.doi.org/10.1242/jcs.017897
[47] Giannotta, M., Trani, M. and Dejana, E. (2013) VE-Cadherin and Endothelial Adherens Junctions: Active Guardians of Vascular Integrity. Developmental Cell, 26, 441-454.
http://dx.doi.org/10.1016/j.devcel.2013.08.020
[48] Fernandez-Borja, M., van Buul, J.D. and Hordijk, P.L. (2010) The Regulation of Leucocyte Transendothelial Migration by Endothelial Signalling Events. Cardiovascular Research, 86, 202-210.
http://dx.doi.org/10.1093/cvr/cvq003
[49] Gavard, J. and Gutkind, J.S. (2006) VEGF Controls Endothelial-Cell Permeability by Promoting the Beta-Arrestin- Dependent Endocytosis of VE-Cadherin. Nature Cell Biology, 8, 1223-1234.
http://dx.doi.org/10.1038/ncb1486
[50] Schulz, B., Pruessmeyer, J., Maretzky, T., Ludwig, A., Blobel, C.P., Saftig, P. and Reiss, K. (2008) ADAM10 Regulates Endothelial Permeability and T-Cell Transmigration by Proteolysis of Vascular Endothelial Cadherin. Circulation Research, 102, 1192-1201.
http://dx.doi.org/10.1161/CIRCRESAHA.107.169805
[51] Wessel, F., Winderlich, M., Holm, M., Frye, M., Rivera-Galdos, R., Vockel, M., Linnepe, R., Ipe, U., Stadtmann, A., Zarbock, A., Nottebaum, A.F. and Vestweber, D. (2014) Leukocyte Extravasation and Vascular Permeability Are each Controlled in Vivo by Different Tyrosine Residues of VE-Cadherin. Nature Immunology, 15, 223-230.
http://dx.doi.org/10.1038/ni.2824
[52] Hebda, J.K., Leclair, H.M., Azzi, S., Roussel, C., Scott, M.G., Bidere, N. and Gavard, J. (2013) The C-Terminus Region of Beta-Arrestin1 Modulates VE-Cadherin Expression and Endothelial Cell Permeability. Cell Communication Signaling, 11, 37.
http://dx.doi.org/10.1186/1478-811X-11-37
[53] Ratchford, A.M., Baker, O.J., Camden, J.M., Rikka, S., Petris, M.J., Seye, C.I., Erb, L. and Weisman, G.A. (2010) P2Y2 Nucleotide Receptors Mediate Metalloprotease-Dependent Phosphorylation of Epidermal Growth Factor Receptor and ErbB3 in Human Salivary Gland Cells. Journal of Biological Chemistry, 285, 7545-7555.
http://dx.doi.org/10.1074/jbc.M109.078170
[54] Korczynski, J., Sobierajska, K., Krzeminski, P., Wasik, A., Wypych, D., Pomorski, P. and Klopocka, W. (2011) Is MLC Phosphorylation Essential for the Recovery from ROCK Inhibition in Glioma C6 Cells? Acta biochimica Polonica, 58, 125-130.
[55] Kaczmarek, E., Erb, L., Koziak, K., Jarzyna, R., Wink, M.R., Guckelberger, O., Blusztajn, J.K., Trinkaus-Randall, V., Weisman, G.A. and Robson, S.C. (2005) Modulation of Endothelial Cell Migration by Extracellular Nucleotides: Involvement of Focal Adhesion Kinase and Phosphatidylinositol 3-Kinase-Mediated Pathways. Thrombosis and Haemostasis, 93, 735-742.
[56] Seye, C.I., Agca, Y., Agca, C. and Derbigny, W. (2012) P2Y2 Receptor-Mediated Lymphotoxin-Alpha Secretion Regulates Intercellular Cell Adhesion Molecule-1 Expression in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 287, 10535-10543.
http://dx.doi.org/10.1074/jbc.M111.313189
[57] Haidari, M., Zhang, W., Chen, Z., Ganjehei, L., Warier, N., Vanderslice, P. and Dixon, R. (2011) Myosin Light Chain Phosphorylation Facilitates Monocyte Transendothelial Migration by Dissociating Endothelial Adherens Junctions. Cardiovascular Research, 92, 456-465.
http://dx.doi.org/10.1093/cvr/cvr240
[58] Chen, X.L., Nam, J.O., Jean, C., Lawson, C., Walsh, C.T., Goka, E., Lim, S.T., Tomar, A., Tancioni, I., Uryu, S., Guan, J.L., Acevedo, L.M., Weis, S.M., Cheresh, D.A. and Schlaepfer, D.D. (2012) VEGF-Induced Vascular Permeability Is Mediated by FAK. Developmental Cell, 22, 146-157.
http://dx.doi.org/10.1016/j.devcel.2011.11.002
[59] Allingham, M.J., van Buul, J.D. and Burridge, K. (2007) ICAM-1-Mediated, Src- and Pyk2-Dependent Vascular Endothelial Cadherin Tyrosine Phosphorylation Is Required for Leukocyte Transendothelial Migration. Journal of Immunology, 179, 4053-4064.
http://dx.doi.org/10.4049/jimmunol.179.6.4053
[60] Nelson, C.M. and Chen, C.S. (2003) VE-Cadherin Simultaneously Stimulates and Inhibits Cell Proliferation by Altering Cytoskeletal Structure and Tension. Journal of Cell Science, 116, 3571-3581.
http://dx.doi.org/10.1242/jcs.00680
[61] Ferber, A., Yaen, C., Sarmiento, E. and Martinez, J. (2002) An Octapeptide in the Juxtamembrane Domain of VE-Cadherin Is Important for p120ctn Binding and Cell Proliferation. Experimental Cell Research, 274, 35-44.
http://dx.doi.org/10.1006/excr.2001.5436
[62] Chen, J., Shao, C., Lu, W., Yan, C., Yao, Q., Zhu, M., Chen, P., Gu, P., Fu, Y. and Fan, X. (2014) Adenosine Triphosphate-Induced Rabbit Corneal Endothelial Cell Proliferation in Vitro via the P2Y2-PI3K/Akt Signaling Axis. Cells, Tissues, Organs, 199, 131-139.
http://dx.doi.org/10.1159/000365654
[63] Shay-Salit, A., Shushy, M., Wolfovitz, E., Yahav, H., Breviario, F., Dejana, E. and Resnick, N. (2002) VEGF Receptor 2 and the Adherens Junction as a Mechanical Transducer in Vascular Endothelial Cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 9462-9467.
http://dx.doi.org/10.1073/pnas.142224299
[64] Bodin, P. and Burnstock, G. (2001) Evidence that Release of Adenosine Triphosphate from Endothelial Cells during Increased Shear Stress Is Vesicular. Journal of Cardiovascular Pharmacology, 38, 900-908.
http://dx.doi.org/10.1097/00005344-200112000-00012
[65] Wang, Y., Jin, G., Miao, H., Li, J.Y., Usami, S. and Chien, S. (2006) Integrins Regulate VE-Cadherin and Catenins: Dependence of This Regulation on Src, but Not on Ras. Proceedings of the National Academy of Sciences of the United States of America, 103, 1774-1779.
http://dx.doi.org/10.1073/pnas.0510774103
[66] Erb, L., Liu, J., Ockerhausen, J., Kong, Q., Garrad, R.C., Griffin, K., Neal, C., Krugh, B., Santiago-Perez, L.I., Gonzalez, F.A., Gresham, H.D., Turner, J.T. and Weisman, G.A. (2001) An RGD Sequence in the P2Y2 Receptor Interacts with αvβ3 Integrins and Is Required for Go-Mediated Signal Transduction. Journal of Cell Biology, 153, 491-501.
http://dx.doi.org/10.1083/jcb.153.3.491
[67] Wojciak-Stothard, B., Potempa, S., Eichholtz, T. and Ridley, A.J. (2001) Rho and Rac but Not Cdc42 Regulate Endothelial Cell Permeability. Journal of Cell Science, 114, 1343-1355.
[68] van Wetering, S., van den Berk, N., van Buul, J.D., Mul, F.P., Lommerse, I., Mous, R., ten Klooster, J.P., Zwaginga, J.J. and Hordijk, P.L. (2003) VCAM-1-Mediated Rac Signaling Controls Endothelial Cell-Cell Contacts and Leukocyte Transmigration. American Journal of Physiology: Cell Physiology, 285, C343-352.
http://dx.doi.org/10.1152/ajpcell.00048.2003

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.