Share This Article:

Hydrothermal Synthesis and Properties of Diluted Magnetic Semiconductor Zn1-xMnxO Nanowires

Abstract Full-Text HTML Download Download as PDF (Size:683KB) PP. 6-10
DOI: 10.4236/ojpc.2011.11002    4,994 Downloads   10,813 Views   Citations


We report the synthesis of oriented single crystalline Mn doped ZnO nanowires through a hydrothermal method. Structural characterizations using X-ray diffraction and transmission electron microscopy revealed that the Mn was doped into the lattice structure, forming solid solution. The Mn doped ZnO nanowires possess wurtzite structure with a c-axis growth orientation. The physical properties of the nanowires were investigated. Mn doped ZnO nanowires were found to be ferromagnetic with Curie temperature of about 30 K. A deep level emission band at about 566 nm was observed at room temperature.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

X. Zhang, J. Dai and H. Ong, "Hydrothermal Synthesis and Properties of Diluted Magnetic Semiconductor Zn1-xMnxO Nanowires," Open Journal of Physical Chemistry, Vol. 1 No. 1, 2011, pp. 6-10. doi: 10.4236/ojpc.2011.11002.


[1] S. Iijima, Nature Vol. 354, No. 6348, 1991, pp. 56-58.
[2] M. H. Devoret, D. Esteve, and C. Urbina, Nature Vol. 360, No. 6404, 1992, pp. 547-553.
[3] H. J. Dai, E. W. Wong, Y. Z. Lu, S. Fan, and C. M. Lieber, Nature Vol. 375, No. 6534, 1995, pp. 769-772.
[4] A. P. Alivisatos, Science Vol. 271, No. 5251, 1996, pp. 933-937.
[5] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science Vol. 292, 2001, pp. 1897-1899.
[6] A. M. Morales and C. M. Lieber, Science Vol. 279, No. 5348, 1998, pp. 208-211.
[7] N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. Vol. 73, No. 26, 1998, pp. 3902- 3904.
[8] D. C. Look, Mater. Sci. Eng. B Vol. 80, No. 1-3, 2001, pp. 383-387.
[9] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. Vol. 72, No. 25, 1998, pp. 3270-3272.
[10] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. ferrand, Science Vol. 287, No. 5455, 2000, pp. 1019-1022.
[11] T. Dietl, Semicond. Sci. Technol. Vol. 17, No. 4, 2002, pp. 377.
[12] Y. W. Heo, M. P. Lvill, K. Ip, D. P. Norton, S. J. Pearton, J. G. Kelly, R. Rairigh, A. F. Hebard, and T. Steiner, Appl. Phys. Lett. Vol. 84, No.13, 2004, pp. 2292-2294.
[13] W. Prellier, A. Foucheta, and B. Mercey, J. Phys. C Vol. 15, No. 37, 2003, pp. R1583-R1601.
[14] S. J. Han, J. W. Song, C. H. Yang, S. H. Park, Y. H. Jeong, and K. W. Rhie, Appl. Phys. Lett. Vol. 81, No. 22, 2002, pp. 2412-2414.
[15] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, Nature Mater. Vol. 2, 2003, pp. 673-677.
[16] D. P. Norton, S. J. Pearton, A. F. Hebard, N. Theodoropoulou, L. A. Boatner, and R. G. Wilson, Appl. Phys. Lett., Vol. 82, No. 26, 2003, pp. 239-241.
[17] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett. Vol. 78, No. 7, 2001, pp. 958-960.
[18] X. M. Cheng, and C. L. Chien, J. Appl. Phys. Vol. 93, No. 10, 2003, pp. 7876-7878.
[19] C. Ronning, P. X. Gao, Y. Ding, Z. L. Wang, and D. Schwen, Appl. Phys. Lett. Vol. 84, No. 5, 2004, pp. 783-785.
[20] M. H. Huang, Y. W. Henning Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. Vol. 13, No. 2, 2001, pp. 113-116.
[21] Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater. Vol. 13, No. 1, 2003, pp. 9-24.
[22] V. A. L. Roy, A. B. Djuri?i?, H. Liu, X. X. Zhang, Y. H. Leung, M. H. Xie, J. Gao, H. F. Lui, and C. Surya, Appl. Phys. Lett. Vol. 84, No. 5, 2004, pp. 756-758.
[23] Y. Q. Chang, D. B. Wang, X. H. Luo, X. Y. Xu, X. H. Chen, L. Li, C. P. Chen, R. M. Wang, J. Xu, D. P. Yu, Appl. Phys. Lett. Vol. 83, No. 19, 2003, pp. 2292-2294.
[24] L. Vayssieres, K. Keis, S. –E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B Vol. 105, No. 17, 2001, pp. 3350-3352.
[25] L. Vayssieres, K. Keis, A. Hagfeldt, and S. –E. Lindquist, Chem. Mater. Vol. 13, No. 12, 2001, pp. 4395-4398.
[26] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, Angew. Chem. Int. Ed. Vol. 42, No. 26, 2003, pp. 3031-3034.
[27] B. Liu, and H. C. Zeng, J. Am. Chem. Soc. Vol. 125, No. 15, 2003, pp. 4430-4431.
[28] S. W. jung, S. J. An, G. C. Yi, C. U. Jung, S. I. Lee, S. Cho, Appl. Phys. Lett. Vol. 80, No. 24, 2002, pp 4561- 563.
[29] V. A. L. Roy, A. B. Djurisic, H. Liu, X. X. Zhang, Y. H. leung, M. H. Xie, J. Gao, H. F. Liu, C. Surya, Appl. Phys. Lett. Vol. 84, No. 5, 2004, pp 756-758.
[30] B. D. Yao, L. Feng, C. Cheng, M. M. T. Loy, N. Wang, Appl. Phys. Lett. Vol. 96, No. 22, 2010, pp. 223105 (1-3).
[31] D. Dingle, Physics Review Letters, Vol. 23, No. 11, 1969, pp. 579-581.
[32] B. Q. Cao, F. Q. Sun, W. P. Cai, Electrochem. Solid-State Letters. Vol. 8, No. 9, 2005, pp. 237-G240.
[33] Y. Li, G. W. Meng, L. D. Zhang, Appl. Phys. Lett. Vol. 76, No. 15, 2000, pp. 2011-2013.
[34] A. L. He, X. Q. Wang, Y. Q. Fan, and Y. P. Feng, J. Appl. Phys. Vol. 108, No. 8, 2010, pp. 084308(1-5).

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.