Share This Article:

Mineral Chemistry and Thermobarometry of the Volcanic Rocks in Torud, Iran

Abstract Full-Text HTML XML Download Download as PDF (Size:3707KB) PP. 425-435
DOI: 10.4236/ojg.2014.49033    3,025 Downloads   3,767 Views   Citations

ABSTRACT

This paper elucidates the compositional studies on clinopyroxene, plagioclase of basalts to andesitic rocks of Torud area to understand the geotectonic and geothermobarometry conditions. Early Eocene-Oligocene calc-alkaline volcanic rocks are exposed around Torud in the Central Iranian zone. Volcanic rocks consist of basaltic, andesite basalt, Tracyandesite, and andesite. Minerals in the volcanic rocks exhibit degrees of disequilibrium features. Plagioclase as dominant mineral in these rocks generally displays oscillatory zoning. Mineral chemistry studies show that clinopyroxenes in the volcanic rocks are diopside, augite and plotted in medium pressure field. The clinopyroxene composition yields the crystallization temperatures 900°C - 1000°C. The mineral composition indicates that these rocks are formed in a tensional environment.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hosseini, E. , Ardalan, A. , Emami, M. and Razavi, M. (2014) Mineral Chemistry and Thermobarometry of the Volcanic Rocks in Torud, Iran. Open Journal of Geology, 4, 425-435. doi: 10.4236/ojg.2014.49033.

References

[1] Soffel, H. and Forster, H.G. (1984) Polar Wander Depth of the Central East Iran Microplate Including New Results. Neues Jahrbuch für Geologie und Pal?ontologie, 198, 165-172.
[2] Alavi, M. (2004) Structures of the Zagros Fold-Thrust Belt in Iran. American Journal of Science, 307, 1064-1095.
[3] Nadimi, A. (2007) Evolution of the Central Iranian Basement. Gondwana Research, 12, 324-333.
[4] Celal ^Sengor, A.M. and Yilmaz, Y. (1981) Tethyan Evolution of Turkey: A Plat Tectonic Approach. Tectonophysics, 75, 181-241. http://dx.doi.org/10.1016/0040-1951(81)90275-4
[5] Ahmadzadeh, G., Jahangiri, A., Lentz, D. and Mojtahedi, M. (2010) Petrogenesis of Plio-Quaternary Post-Collisional Ultrapotassic Volcanism in NW of Marand, NW Iran. Journal of Asian Earth Sciences, 39, 37-50. http://dx.doi.org/10.1016/j.jseaes.2010.02.008
[6] Stocklin, Y. (1973) Basic Geological Study of Central Lut, East of Iran. Report 22-F, Institute of Geology and Mining Publications, Tehran, 56.
[7] Farhoudi, G. (1978) A Comparison of Zagros Geology to Island Arcs. Journal of Geology, 86, 325-334. http://dx.doi.org/10.1086/649694
[8] Emami, M.H. (1981) Geologie de la Region de Qom. Aran (Iran) Contribution an I’etude Dynamique Etgeochemique du Volcanisme Tertiaire I’Iran Central. These doctoratw Earth Grenoble, Vol. 21, 489 p.
[9] Jahangiri, A. (2007) Post-Collisional Miocene Adakitic Volcanism in NW Iran: Geochemical and Geodynamic Implications. Journal of Asian Earth Sciences, 30, 433-447.
http://dx.doi.org/10.1016/j.jseaes.2006.11.008
[10] Berberian, M. and King, G.C.P. (1981) Towards a Paleogeography and Tectonic Evolution of Iran. Canadian Journal of Earth Sciences, 18, 210-256. http://dx.doi.org/10.1139/e81-019
[11] Dupuy, C. and Dostal, J. (1984) Trace Element Geochemistry of Some Continental Tholeiites. Earth and Planetary Science Letters, 67, 61-69. http://dx.doi.org/10.1016/0012-821X(84)90038-4
[12] Azizi, H. and Jahangiri, A. (2008) Cretaceous Subduction-Related Volcanism in the Northern Sanandaj-Sirjan Zone, Iran. Journal of Geodynamics, 45, 178-190.
[13] Jung, D., Küsten, M. and Tarkian, M. (1976) Post-Mesozoic Volcanism in Iran and Its Relation to the Subduction of the Afro-Arabian under the Eurasian Plate. In: Pilger, A. and Rosler, A., Eds., Afar between Continental and Oceanic Rifting, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 175-181.
[14] Houshmandzadeh, A.S., Alavi, M. and Pvr, R. (1357) Geological Evolution of the Phenomenon TORUD (from the Precambrian to the Present Covenant). Geological Survey, 138 p.
[15] Feeley, T.C. and Dungan, M.A. (1996) Compositional and Dynamic Controls on Mafic-Silicic Magma Interactions at Continental Arc Volcanoes; Evidence from Cordon El Guadal, Tatara-San Pedro Complex, Chile. Journal of petrology, 37, 1547-1577. http://dx.doi.org/10.1093/petrology/37.6.1547
[16] Nelson, S.T. and Montana, A. (1992) Sieved Textured Plagioclase in Volcanic Rocks Produced by Rapid Decompression. American Mineralogist, 77, 1242-1249.
[17] Morimoto, N. (1988) The Nomenclature of Pyroxenes. Mineralogical Magazine, 52, 425-433.
[18] Kontak, D.J., Clarck, A.H. and Pearce, T.H. (1984) Recognition of Simple and Complex Zoning in Olivine and Orthopyroxene Phenocrysts Using Laser Interference Microscopy. Mineralogical Magazine, 48, 547-550. http://dx.doi.org/10.1180/minmag.1984.048.349.11
[19] Luhr, J.F. and Carmichael, I.S.E. (1980) The Colima Volcanic Complex, Mexico. I. Post-Caldera and Esites from Volcan Colima. Contributions to Mineralogy Petrology, 71, 343-372.
http://dx.doi.org/10.1007/BF00374707
[20] Grunder, A.L. and Mahood, G.A. (1988) Physical and Chemical Models of Zoned Silicic Magmas: The Loma Seca Tuff and Calabozos Caldera, Southern Andes. Journal of Petrology, 29, 831-867.
http://dx.doi.org/10.1093/petrology/29.4.831
[21] Nixon, G.T. and Pearce, T.H. (1987) Laser-Interferometry of Oscillatory Zoning in Plagioclase: The Record of Magma Mixing and Phenocryst Recycling in Calc-Alkaline Magma Chambers, Iztaccihuat Volcano, Mexico. American Mineralogist, 72, 1144-1162.
[22] Morrice, M.G. and Gill, J.B. (1986) Spatial Patterns in the Mineralogy of Island Arc Magma Series: Sangihe Arc. Indonesia. Journal of Volcanology and Geothermal Research, 29, 311-353.
http://dx.doi.org/10.1016/0377-0273(86)90050-8
[23] Gamble, R.P. and Taylor, L.A. (1980) Crystal/Liquid Partitioning Augite: Effects of Cooling Rate. Earth and Planetary Science Letters, 47, 21-33. http://dx.doi.org/10.1016/0012-821X(80)90100-4
[24] Ewart, A. (1979) A Review of the Mineralogy and Chemistry of Tertiary—Recent Dacitic, Latitic, Rhyolitic, and Related Salic Volcanic Rocks. In: Barker, F., Ed., Trondhjemites, Dacites and Related Rocks, Elsevier, Amsterdam, 13111.
[25] Deer, W.A., Howie, R.A. and Zussman, J. (1997) Single-Chain Silicates. Geological Society of London, London.
[26] France, L., Koepke, J., Ildefonse, B., Cichy, S.B. and Deschamps, F. (2010) Hydrous Partial Melting in the Sheeted Dike Complex at Fast Spreading Ridges: Experimental and Natural Observations. Contributions to Mineralogy and Petrology, 160, 683-704. http://dx.doi.org/10.1007/s00410-010-0502-6
[27] Kilinc, A., Carmichael, I., Rivers, M. and Sack, R. (1983) The Ferric-Ferrous Ratio of Natural Silicate Liquids Equilibrated in Air. Contributions to Mineralogy and Petrology, 83, 136-140.
http://dx.doi.org/10.1007/BF00373086
[28] Moretti, R. (2005) Polymerisation, Basicity, Oxidation State and Their Role in Ionic Modelling of Silicate Melts. Annals of Geophysics, 56, 340-368.
[29] Botcharnikov, R., Koepke, J., Holtz, F., McCammon, C. and Wilke, M. (2005) The Effect of Water Activity on the Oxidation and Structural State of Fe in a Ferro-Basaltic Melt. Geochimica et Cosmochimica Acta, 69, 5071-5085.
[30] Papike, J.J. and Cameron, M. (1976) Crystal Chemistry of Silicate Minerals of Geophysical Interest. Reviews of Geophysics, 14, 37-80. http://dx.doi.org/10.1029/RG014i001p00037
[31] Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B. (1986) A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27, 745-750.
[32] Schweitzer, E.L., Papike, J.J. and Bence, A.E. (1979) Statistical Analysis of Clinopyroxenes from Deepsea Basalts. American Mineralogist, 64, 502-513.
[33] Kushiro, I. (1960) Si-Al Relation in Clinopyroxenes from Igneous Rocks. American Journal of Science, 258, 548-554. http://dx.doi.org/10.2475/ajs.258.8.548
[34] Hout, F., Hébert, R., Varfalvy, V., Beaudoin, G., Wang, C.S., Liu, Z.F., Cotten, J. and Dostal, J. (2002) The Beimarang Melange (Southern Tibet) brings Additional Constraints in Assessing the Origin, Metamorphic Evolution and Obduction Processes of the Yarlung Zangbo Ophiolite. Journal of Asian Earth Sciences, 21, 307-322. http://dx.doi.org/10.1016/S1367-9120(02)00053-6
[35] Leterrier, J., Maury, R.C., Thonon, P., Girard, D. and Marchal, M. (1982) Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59, 139-154. http://dx.doi.org/10.1016/0012-821X(82)90122-4
[36] Nimis, P. and Taylor, W.R. (2000) Single Clinopyroxene Thermobarometery for Garnet Peridotites. Part I. Calibration and Testing of the Cr-in-Cpx Barometer and an Enstitite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology, 139, 541-554. http://dx.doi.org/10.1007/s004100000156
[37] Green, D.H. and Ringwood, A.E. (1967) An Experimental Investigation of the Gabbro to Eclogite Transformation and Its Petrological Applications. Geochimica et Cosmochimica Acta, 31, 767-833. http://dx.doi.org/10.1016/S0016-7037(67)80031-0
[38] Helz, R.T. (1973) Phase Relations of Basalts in Their Melting Ranges at = 5 kb as a Function of Oxygen Fugacity, Part I. Mafic Phases. Journal of Petrology, 14, 249-302.
http://dx.doi.org/10.1093/petrology/14.2.249
[39] Aoki, K.I. and Shiba, I. (1973) Pyroxenes from Lherzolite Inclusions of Itinome-Gata, Japan. Lithos, 6, 41-51. http://dx.doi.org/10.1016/0024-4937(73)90078-9

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.