Share This Article:

Renewable Hydrogen Produced from Different Renewable Feedstock by Aqueous-Phase Reforming Process

Abstract Full-Text HTML XML Download Download as PDF (Size:395KB) PP. 113-127
DOI: 10.4236/jsbs.2014.42011    4,253 Downloads   6,285 Views   Citations

ABSTRACT

Aqueous phase reforming (APR) of biomass derived feedstock producing hydrogen was reviewed. The APR process was discussed based on different feedstock categories such as sugars, polyols and ethanol. The mechanism of APR was analyzed referring to different structures of feedstock. The reaction pathways of APR were investigated. The usage of catalysts should be judged by feedstock on the requirement including C-C bond cleavage, water-gas shift (WGS) reaction, and catalyst maintenance. The prospects were concluded based on the recent works from bimetallic catalysts and high efficient supports. Examples of significant challenges of reducing catalyst cost and increasing catalyst stability have been discussed. The modification and utilization of alkane selectivity of APR processes for liquid fuel production was also investigated.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Wei, Y. , Lei, H. , Liu, Y. , Wang, L. , Zhu, L. , Zhang, X. , Yadavalli, G. , Ahring, B. and Chen, S. (2014) Renewable Hydrogen Produced from Different Renewable Feedstock by Aqueous-Phase Reforming Process. Journal of Sustainable Bioenergy Systems, 4, 113-127. doi: 10.4236/jsbs.2014.42011.

References

[1] Preciado, J. (2013) Short-Term Energy Outlook Market Prices and Uncertainty Report. US Department of Energy EIA, US Government. http://www.eia.gov/forecasts/steo/uncertainty/
[2] Balat, M. and Balat, M. (2009) Political, Economic and Environmental Impacts of Biomass-Based Hydrogen. International Journal of Hydrogen Energy, 34, 3589-3603.
http://dx.doi.org/10.1016/j.ijhydene.2009.02.067
[3] Bu, Q., Lei, H., Zacher, A.H., Wang, L., Ren, S., Liang, J., Wei, Y., Liu, Y., Tang, J., Zhang, Q. and Ruan, R. (2012) A Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenols from Biomass Pyrolysis. Bioresource Technology, 124, 470-477.
http://dx.doi.org/10.1016/j.biortech.2012.08.089
[4] Basagiannis, A.C. and Verykios, X.E. (2007) Catalytic Steam Reforming of Acetic Acid for Hydrogen Production. International Journal of Hydrogen Energy, 32, 3343-3355.
http://dx.doi.org/10.1016/j.ijhydene.2007.04.039
[5] Nigam, P.S. and Singh, A. (2010) Production of Liquid Biofuels from Renewable Resources. Progress in Energy and Combustion Science, 37, 52-68.
http://dx.doi.org/10.1016/j.pecs.2010.01.003
[6] Davda, R.R., Shabaker, J.W., Huber, G.W., Cortright, R.D. and Dumesic, J.A. (2005) A Review of Catalytic Issues and Process Conditions for Renewable Hydrogen and Alkanes by Aqueous-Phase Reforming of Oxygenated Hydrocarbons over Supported Metal Catalysts. Applied Catalysis B: Environmental, 56, 171-186.
http://dx.doi.org/10.1016/j.apcatb.2004.04.027
[7] Kirtay, E. (2011) Recent Advances in Production of Hydrogen from Biomass. Energy Conversion and Management, 52, 1778-1789.
http://dx.doi.org/10.1016/j.enconman.2010.11.010
[8] Demirbas, A. (2009) Emission Characteristics of Gasohol and Diesohol. Energy Source A, 31, 1099-1104.
http://dx.doi.org/10.1080/10916460801907120
[9] Demirbas, M.F., Balat, M. and Balat, H. (2009) Potential Contribution of Biomass to the Sustainable Energy Development. Energy Conversion and Management, 50, 1746-1760.
http://dx.doi.org/10.1016/j.enconman.2009.03.013
[10] Balat, M. (2008) Mechanisms of Thermochemical Biomass Conversion Processes. Part 3: Reactions of Liquefaction. Energy Source A, 30, 649-659.
[11] Balat, M. (2009) Development of Worldwide Green Electricity in the Past Decade. Energy Source B, 4, 17-33.
http://dx.doi.org/10.1080/15567240802458575
[12] Holladay, J.D., Hu, J., King, D.L. and Wang, Y. (2009) An Overview of Hydrogen Production Technologies. Catalysis Today, 139, 244-260.
http://dx.doi.org/10.1016/j.cattod.2008.08.039
[13] Adhikari, S., Fernando, S.D. and Haryanto, A. (2009) Hydrogen Production from Glycerol: An Update. Energy Convers Manage, 40, 2600-2604.
http://dx.doi.org/10.1016/j.enconman.2009.06.011
[14] Cortright, R.D., Davda, R.R. and Dumesic, J.A. (2002) Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water. Nature, 418, 964-967.
http://dx.doi.org/10.1038/nature01009
[15] Tuza, P.V., Manfro, R.L., Ribeiro, N.F.P. and Souza, M.M.V.M. (2013) Production of Renewable Hydrogen by Aqueous-Phase Reforming of Glycerol over Ni-Cu Catalysts Derived from Hydrotalcite Precursors. Renewable Energy, 50, 408-414.
http://dx.doi.org/10.1016/j.renene.2012.07.006
[16] Oh, S.E. and Logan, B.E. (2007) Voltage Reversal during Microbial Fuel Cell Stack Operation. Journal of Power Sources, 167, 11-17.
http://dx.doi.org/10.1016/j.jpowsour.2007.02.016
[17] Aiouache, F., McAleer, L., Gan, Q., Al-Muhtaseb, A.H. and Ahmad, M.N. (2013) Path Lumping Kinetic Model for Aqueous Phase Reforming of Sorbitol. Applied Catalysis A: General, 466, 240-255.
http://dx.doi.org/10.1016/j.apcata.2013.06.039
[18] Kim, T., Kim, H., Jeong, K., Chae, H., Jeong, S., Lee, C. and Kim, C. (2011) Catalytic Production of Hydrogen through Aqueous Phase Reforming over Platinum/Ordered Mesoporous Carbon Catalysts. Green Chemistry, 13, 1718-1728.
http://dx.doi.org/10.1039/c1gc15235a
[19] Rhodes, C., Huchings, G.J. and Ward, A.M. (1995) Water-Gas Shift Reaction: Finding the Mechanistic Boundary. Catalysis Today, 23, 43-58.
http://dx.doi.org/10.1016/0920-5861(94)00135-O
[20] Davda, R.R., Shabaker, J.W., Huber, G.W., Cortright, R.D. and Dumesic, J.A. (2003) Aqueous-Phase Reforming of Ethylene Glycol on Silica-Supported Metal Catalysts. Applied Catalysis B: Environmental, 43, 13-26.
http://dx.doi.org/10.1016/S0926-3373(02)00277-1
[21] Shabaker, J.W., Huber, G.W., Davda, R.R., Cortright, R.D. and Dumesic, J.A. (2003) Aqueous-Phase Reforming of Ethylene Glycol over Supported Platinum Catalysts. Catalysis Letters, 88, 1-8.
http://dx.doi.org/10.1023/A:1023538917186
[22] Li, N. and Huber, G. (2010) Aqueous-Phase Hydrodeoxygenation of Sorbitol with Pt/SiO2-Al2O3: Identification of Reaction Intermediates. Journal of Catalysis, 270, 48-59.
http://dx.doi.org/10.1016/j.jcat.2009.12.006
[23] Lin, Y. and Huber, G. (2009) The Critical Role of Heterogenous Catalysis in Lignocellulosic Biomass Conversion. Energy & Environmental Science, 2, 68-80.
http://dx.doi.org/10.1039/b814955k
[24] Huber, G.W. and Dumesic, J.A. (2006) An Overview of Aqueous-Phase Catalytic Processes for Production of Hydrogen and Alkanes in a Biorefinery. Catalysis Today, 111, 119-132.
http://dx.doi.org/10.1016/j.cattod.2005.10.010
[25] Kirilin, A.V., Tokarev, A.V., Kustov, L.M., Salmi, T., Mikkola, J.P. and Murzin, D.Y. (2012) Aqueous Phase Reforming of Xylitol and Sorbitol: Comparison and Influence of Substrate Structure. Applied Catalysis A: General, 435-436, 172-180.
http://dx.doi.org/10.1016/j.apcata.2012.05.050
[26] Huber, G.W., Shabaker, J.W., Evans, S.T. and Dumesic, J.A. (2006) Aqueous-Phase Reforming of Ethylene Glycol over Supported Pt and Pd Bimetallic Catalysts. Applied Catalysis B: Environmental, 62, 226-235.
http://dx.doi.org/10.1016/j.apcatb.2005.07.010
[27] Meryemoglu, B., Hesenov, A., Irmak, S., Atanur, O.M. and Erbatur, O. (2010) Aqueous-Phase Reforming of Biomass Using Various Types of Supported Precious Metal and Raney-Nickel Catalysts for Hydrogen Production. International Journal of Hydrogen Energy, 35, 12580-12587.
http://dx.doi.org/10.1016/j.ijhydene.2010.08.046
[28] Shabaker, J.W., Simonetti, D.A., Cortright, R.D. and Dumesic, J.A. (2005) Sn-Modified Ni Catalysts for Aqueous-Phase Reforming: Characterization and Deactivation Studies. Journal of Catalysis, 231, 67-76.
http://dx.doi.org/10.1016/j.jcat.2005.01.019
[29] Bimbela, F., Chen, D., Ruiz, J., García, L. and Arauzo, J. (2012) Ni/Al Coprecipitated Catalysts Modified with Magnesium and Copper for the Catalytic Steam Reforming of Model Compounds from Biomass Pyrolysis Liquids. Applied Catalysis B: Environmental, 119-120, 1-12.
http://dx.doi.org/10.1016/j.apcatb.2012.02.007
[30] Roy, B., Sullivan, H. and Leclerc, C.A. (2011) Aqueous-Phase Reforming of n-BuOH over Ni/Al2O3 and Ni/CeO2 Catalysts. Journal of Power Sources, 196, 10652-10657.
http://dx.doi.org/10.1016/j.jpowsour.2011.08.093
[31] Zhang, L., Karim, A.M., Engelhard, M.H., Wei, Z., King, D.L. and Wang, Y. (2012) Correlation of Pt-Re Surface Properties with Reaction Pathways for the Aqueous-Phase Reforming of Glycerol. Journal of Catalysis, 287, 37-43. http://dx.doi.org/10.1016/j.jcat.2011.11.015
[32] Davda, R.R. and Dumesic, J.A. (2004) Renewable Hydrogen by Aqueous-Phase Reforming of Glucose. Chemical Communication, Issue 1, 36-37.
http://dx.doi.org/10.1039/b310152e
[33] Pińkowska, H., Wolak, P. and Oliveros, E. (2013) Production of Xylose and Glucose from Rapeseed Straw in Subcritical Water—Use of Doehlert Design for Optimizing the Reaction Conditions. Biomass and Bioenergy, 58, 188-197.
http://dx.doi.org/10.1016/j.biombioe.2013.09.005
[34] Tanksale, A., Beltramini, J.N. and Lu, G.M. (2010) A Review of Catalytic Hydrogen Production Processes from Biomass. Renewable and Sustainable Energy Reviews, 14, 166-182.
http://dx.doi.org/10.1016/j.rser.2009.08.010
[35] Gursahani, K.I., Alcala, R., Cortright, R.D. and Dumesic, J.A. (2001) Reaction Kinetics Measurements and Analysis of Reaction Pathways for Conversions of Acetic Acid, Ethanol, and Ethyl Acetate over Silica-Supported Pt. Applied Catalysis A: General, 222, 369-392.
http://dx.doi.org/10.1016/S0926-860X(01)00844-4
[36] Minowa, T. and Ogi, T. (1998) Hydrogen Production from Cellulose Using a Reduced Nickel, Catalyst. Catalysis Today, 45, 411-416.
http://dx.doi.org/10.1016/S0920-5861(98)00277-6
[37] Tanksale, A., Beltramini, J.N. and Lu, G.Q. (2006) Reaction Mechanisms for Renewable Hydrogen from Liquid Phase Reforming of Sugar Compounds. Developments in Chemical Engineering and Mineral Processing, 14, 9-18.
http://dx.doi.org/10.1002/apj.5500140102
[38] Kabyemela, B.M., Adschiri, T., Malaluan, R.M. and Arai, K. (1999) Glucose and Fructose Decomposition in Subcritical and Supercritical Water: Detailed Reaction Pathway, Mechanisms, and Kinetics. Industrial & Engineering Chemistry Research, 38, 2888-2895.
http://dx.doi.org/10.1021/ie9806390
[39] Kanie, Y., Akiyama, K. and Iwamoto, M. (2011) Reaction Pathways of Glucose and Fructose on Pt Nanoparticles in Subcritical Water under a Hydrogen Atmosphere. Catalysis Today, 178, 58-63.
http://dx.doi.org/10.1016/j.cattod.2011.07.031
[40] Zhang, J., Xu, S., Wu, S. and Liu, Y. (2013) Hydrogenation of Fructose over Magnetic Catalyst Derived from Hydrotalcite Precursor. Chemical Engineering Science, 99, 171-176.
http://dx.doi.org/10.1016/j.ces.2013.06.002
[41] Flego, C., Carati, A. and Perego, C. (2001) Methanol Interaction with Mesoporous Silica-Aluminas. Microporous and Mesoporous Materials, 44-45, 733-744.
http://dx.doi.org/10.1016/S1387-1811(01)00255-4
[42] Tanksale, A., Beltramini, J.N., Dumesic, J.A. and Lu, G.Q. (2008) Effect of Pt and Pd promoter on Ni Supported Catalysts—A TPR/TPO/TPD and Microcalorimetry Study. Journal of Catalysis, 258, 366-377.
http://dx.doi.org/10.1016/j.jcat.2008.06.024
[43] Silveira, M.M. and Jonas, R. (2004) Sorbitol Can Be Produced Not Only Chemically but Also Biotechnologically. Applied Biochemistry and Biotechnology, 118, 321-336.
http://dx.doi.org/10.1385/ABAB:118:1-3:321
[44] Li, N., Tompsett, G.A., Zhang, T.Y., Shi, J.A., Wyman, C.E. and Huber, G.W. (2011) Renewable Gasoline from Aqueous Phase Hydrodeoxygenation of Aqueous Sugar Solutions Prepared by Hydrolysis of Maple Wood. Green Chemistry, 13, 91-101.
http://dx.doi.org/10.1039/c0gc00501k
[45] Liu, C., Dong, H., Zhong, J., Ryu, D.D.Y. and Bao, J. (2010) Sorbitol Production Using Recombinant Zymomonas Mobilis Strain. Journal of Biotechnology, 148, 105-112.
[46] Zhang, Q., Wang, T., Xu, Y., Zhang, Q. and Ma, L. (2014) Production of Liquid Alkanes by Controlling Reactivity of Sorbitol Hydrogenation with a Ni/HZSM-5 Catalyst in Water. Energy Conversion and Management, 77, 262-268.
http://dx.doi.org/10.1016/j.enconman.2013.09.032
[47] Kirilin, A.V., Tokarev, A.V., Murzina, E.V., Kustov, L.M., Mikkola, J.P. and Murzin, D.Y. (2010) Reaction Products and Transformations of Intermediates in the Aqueous Phase Reforming of Sorbitol. ChemSusChem, 3, 708-718.
http://dx.doi.org/10.1002/cssc.200900254
[48] Huber, G.W., Shabaker, J.W. and Dumesic, J.A. (2003) Raney Ni-Sn Catalyst for H2 from Biomass-Derived Hydrocarbons. Science, 300, 2075-2077.
http://dx.doi.org/10.1126/science.1085597
[49] Li, Z., Qu, H., Li, C. and Zhou, X. (2013) Direct and Efficient Xylitol Production from Xylan by Saccharomyces cerevisiae through Transcriptional Level and Fermentation Processing Optimizations. Bioresource Technology, 149, 413-419.
http://dx.doi.org/10.1016/j.biortech.2013.09.101
[50] Wisniak, J., Hershkowitz, M., Leibowitz, R. and Stein, S. (1974) Hydrogenation of Xylose to Xylitol. Industrial & Engineering Chemistry Product Research and Development, 13, 75-79.
http://dx.doi.org/10.1021/i360049a015
[51] Kirilin, A.V., Tokarev, A.V., Manyar, H., Hardacre, C., Salmi, T., Mikkola, J.P. and Murzin, D.Y. (2013) Aqueous Phase Reforming of Xylitol over Pt-Re Bimetallic Catalyst: Effect of the Re Addition. Catalysis Today, 215, 97-107.
http://dx.doi.org/10.1016/j.cattod.2013.09.020
[52] Jiang, T., Wang, T., Ma, L., Li, Y., Zhang, Q. and Zhang, X. (2012) Investigation on the Xylitol Aqueous-Phase Reforming Performance for Pentane Production over Pt/HZSM-5 and Ni/HZSM-5 Catalysts. Applied Energy, 90, 51-57.
http://dx.doi.org/10.1016/j.apenergy.2011.03.034
[53] Ayoub, M. and Abdullah, A.Z. (2012) Critical Review on the Current Scenario and Significance of Crude Glycerol Resulting from Biodiesel Industry towards More Sustainable Renewable Energy Industry. Renewable and Sustainable Energy Reviews, 16, 2671-2686.
http://dx.doi.org/10.1016/j.rser.2012.01.054
[54] Selembo, P.A., Perez, J.M., Lloyd, W.A. and Logan, B.E. (2009) High Hydrogen Production from Glycerol or Glucose by Electrohydrogenesis Using Microbial Electrolysis Cells. International Journal of Hydrogen Energy, 34, 5373-5381.
http://dx.doi.org/10.1016/j.ijhydene.2009.05.002
[55] Souza, A.C.C. and Silveira, J.L. (2011) Hydrogen Production Utilizing Glycerol from Renewable Feedstocks—The Case of Brazil. Renewable and Sustainable Energy Reviews, 15, 1835-1850.
http://dx.doi.org/10.1016/j.rser.2010.12.001
[56] Luo, N., Fu, X., Cao, F., Xiao, T. and Edwards, P.P. (2008) Glycerol Aqueous Phase Reforming for Hydrogen Generation over Pt Catalyst-Effect of Catalyst Composition and Reaction Conditions. Fuel, 87, 3483-3489.
http://dx.doi.org/10.1016/j.fuel.2008.06.021
[57] Wawrzetz, A., Peng, B., Hrabar, A., Jentys, A., Lemonidou, A.A. and Lerche, J.A. (2010) Towards Understanding the Bifunctional Hydrodeoxygenation and Aqueous Phase Reforming of Glycerol. Journal of Catalysis, 269, 411-420.
http://dx.doi.org/10.1016/j.jcat.2009.11.027
[58] Guo, Y., Liu, X., Azmat, M.U., Xu, W., Ren, J., Wang, Y. and Lu, G. (2012) Hydrogen Production by Aqueous-Phase Reforming of Glycerol over Ni-B Catalysts. International Journal of Hydrogen Energy, 37, 227-234.
http://dx.doi.org/10.1016/j.ijhydene.2011.09.111
[59] Meryemoglu, B., Kaya, B., Irmak, S., Hesenov, A. and Erbatur, O. (2012) Comparison of Batch Aqueous-Phase Reforming of Glycerol and Lignocellulosic Biomass Hydrolysate. Fuel, 97, 241-244.
http://dx.doi.org/10.1016/j.fuel.2012.02.011
[60] Ciftci, A., Peng, B., Jentys, A., Lercher, J.A. and Hensen, E.J.M. (2012) Support Effects in the Aqueous Phase Reforming of Glycerol over Supported Platinum Catalysts. Applied Catalysis A: General, 431-432, 113-119.
http://dx.doi.org/10.1016/j.apcata.2012.04.026
[61] Menezes, A.O., Rodrigues, M.T., Zimmaro, A., Borges, L.E.P. and Fraga, M.A. (2011) Production of Renewable Hydrogen from Aqueous-Phase Reforming of Glycerol over Pt Catalysts Supported on Different Oxides. Renewable Energy, 36, 595-599.
http://dx.doi.org/10.1016/j.renene.2010.08.004
[62] Copeland, J.R., Foo, G.S., Harrison, L.A. and Sievers, C. (2013) In Situ ATR-IR Study on Aqueous Phase Reforming Reactions of Glycerol over a Pt/γ-Al2O3 Catalyst. Catalysis Today, 205, 49-59.
http://dx.doi.org/10.1016/j.cattod.2012.08.002
[63] Özgür, D. and Uysal, B.Z. (2011) Hydrogen Production by Aqueous Phase Catalytic Reforming of Glycerine. Biomass and Bioenergy, 35, 822-826.
http://dx.doi.org/10.1016/j.biombioe.2010.11.012
[64] Xie, F., Chu, X., Hu, H., Qiao, M., Yan, S., Zhu, Y., He, H., Fan, K., Li, H., Zong, B. and Zhang, X. (2006) Characterization and Catalytic Properties of Sn-Modified Rapidly Quenched Skeletal Ni Catalysts in Aqueous-Phase Reforming of Ethylene Glycol. Journal of Catalysis, 241, 211-220.
http://dx.doi.org/10.1016/j.jcat.2006.05.001
[65] Vlieger, D.J.M., Mojet, B.L., Lefferts, L. and Seshan, K. (2012) Aqueous Phase Reforming of Ethylene Glycol—Role of Intermediates in Catalyst Performance. Journal of Catalysis, 292, 239-245.
http://dx.doi.org/10.1016/j.jcat.2012.05.019
[66] Alcala, R., Mavrikakis, M. and Dumesic, J.A. (2003) DFT Studies for Cleavage of C-C and C-O Bonds in Surface Species Derived from Ethanol on Pt (111). Journal of Catalysis, 218, 178-190.
http://dx.doi.org/10.1016/S0021-9517(03)00090-3
[67] Shabaker, J.W., Davda, R.R., Huber, G.W., Cortright, R.D. and Dumesic, J.A. (2003) Aqueous-Phase Reforming of Methanol and Ethylene Glycol over Alumina-Supported Platinum Catalysts. Journal of Catalysis, 215, 344-352.
http://dx.doi.org/10.1016/S0021-9517(03)00032-0
[68] Kim, H., Park, H., Kim, T., Jeong, K., Chae, H., Jeong, S., Lee, C. and Kim, C. (2012) Hydrogen Production through the Aqueous Phase Reforming of Ethylene Glycol over Supported Pt-Based Bimetallic Catalysts. International Journal of Hydrogen Energy, 37, 8310-8317.
[69] Chu, X., Liu, J., Sun, B., Dai, R., Pei, Y., Qiao, M. and Fan, K. (2011) Aqueous-Phase Reforming of Ethylene Glycol on Co/ZnO Catalysts Prepared by the Coprecipitation Method. Journal of Molecular Catalysis A: Chemical, 335, 129-135. http://dx.doi.org/10.1016/j.molcata.2010.11.024
[70] Pan, G., Ni, Z., Cao, F. and Li, X. (2012) Hydrogen Production from Aqueous-Phase Reforming of Ethylene Glycol over Ni/Sn/Al Hydrotalcite Derived Catalysts. Applied Clay Science, 58, 108-113.
http://dx.doi.org/10.1016/j.clay.2012.01.023
[71] Tokarev, A.V., Kirilin, A.V., Murzina, E.V., Eränen, K., Kustov, L.M., Murzin, D.Y. and Mikkola, J.P. (2010) The Role of Bio-Ethanol in Aqueous Phase Reforming to Sustainable Hydrogen. International Journal of Hydrogen Energy, 35, 12642-12649.
http://dx.doi.org/10.1016/j.ijhydene.2010.07.118
[72] Nozawa, T., Mizukoshi, Y., Yoshida, A. and Naito, S. (2014) Aqueous Phase Reforming of Ethanol and Acetic Acid over TiO2 Supported Ru Catalysts. Applied Catalysis B: Environmental, 146, 221-226.
http://dx.doi.org/10.1016/j.apcatb.2013.06.017
[73] Roy, B., Loganathan, K., Pham, H.N., Datye, A.K. and Leclerc, C.A. (2010) Surface Modification of Solution Combustion Synthesized Ni/Al2O3 Catalyst for Aqueous-Phase Reforming of Ethanol. International Journal of Hydrogen Energy, 35, 11700-11708.
http://dx.doi.org/10.1016/j.ijhydene.2010.07.167
[74] Roy, B., Martinez, U., Loganathan, K., Datye, A.K. and Leclerc, C.A. (2012) Effect of Preparation Methods on the Performance of Ni/Al2O3 Catalysts for Aqueous-Phase Reforming of Ethanol: Part I-Catalytic Activity. International Journal of Hydrogen Energy, 37, 8143-8153.
http://dx.doi.org/10.1016/j.ijhydene.2012.02.056
[75] Roy, B., Artyushkova, K., Pham, H.N., Li, L., Datye, A.K. and Leclerc, C.A. (2012) Effect of Preparation Method on the Performance of the Ni/Al2O3 Catalysts for Aqueous-Phase Reforming of Ethanol: Part II-Characterization. International Journal of Hydrogen Energy, 37, 18815-18826.
http://dx.doi.org/10.1016/j.ijhydene.2012.09.098
[76] Xie, J., Su, D., Yin, X., Wu, C. and Zhu, J. (2011) Thermodynamic Analysis of Aqueous Phase Reforming of Three Model Compounds in Bio-Oil for Hydrogen Production. International Journal of Hydrogen Energy, 36, 15561-15572.
http://dx.doi.org/10.1016/j.ijhydene.2011.08.103
[77] Basagiannis, A.C. and Verykios, X.E. (2007) Catalytic Steam Reforming of Acetic Acid for Hydrogen Production. International Journal of Hydrogen Energy, 32, 3343-3355.
http://dx.doi.org/10.1016/j.ijhydene.2007.04.039
[78] Bimbela, F., Oliva, M., Ruiz, J., Garcia, L. and Arauzo, J. (2007) Hydrogen Production by Catalytic Steam Reforming of Acetic Acid, a Model Compound of Biomass Pyrolysis Liquids. Journal of Analytical and Applied Pyrolysis, 79, 112-120.
http://dx.doi.org/10.1016/j.jaap.2006.11.006
[79] Valenzuela, M.B., Jones, C.W. and Agrawal, P.K. (2006) Batch Aqueous-Phase Reforming of Woody Biomass. Energy & Fuels, 20, 1744-1752.
http://dx.doi.org/10.1021/ef060113p
[80] Geantet, C. and Guilhaume, N. (2008) Hydrogen Production from Biomass. In Vanatrop, 22-24 October 2008, Montpellier.
[81] Soares, R.R., Simonetti, D.A. and Dumesic, J.A. (2006) Glycerol as a Source for Fuels and Chemicals by Low-Temperature Catalytic Processing. Angewandte Chemie International Edition, 45, 3982-3985.
http://dx.doi.org/10.1002/anie.200600212
[82] Kim, H., Kim, T., Park, H., Jeong, K., Chae, H., Jeong, S., Lee, C. and Kim, C. (2012) Hydrogen Production via the Aqueous Phase Reforming of Ethylene Glycol over Platinum-Supported Ordered Mesoporous Carbon Catalysts: Effect of Structure and Framework-Configuration. International Journal of Hydrogen Energy, 37, 12187-12197.
http://dx.doi.org/10.1016/j.ijhydene.2012.05.126
[83] Baliban, R.C., Elia, J.A. and Floudas, C.A. (2013) Biomass to Liquid Transportation Fuels (BTL) Systems: Process Synthesis and Global Optimization Framework. Energy & Environmental Science, 6, 267-287.
http://dx.doi.org/10.1039/c2ee23369j

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.