Share This Article:

The Formation and Structure Evolution of Zechstein (Upper Permian) Salt in Northeast German Basin: A Review

Abstract Full-Text HTML Download Download as PDF (Size:3335KB) PP. 411-426
DOI: 10.4236/ojg.2013.38047    5,557 Downloads   11,267 Views   Citations


The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hydrocarbon sources, as well as the salt production. But the previous studies are validated in cases and a general view on these studies is scarce. By analyzing and integrating previous studies, the history and structure evolution of Zechstein salts were reviewed in this paper. Seven cycles of Zechstein salt (Na1, Na2, Na3, Na4, Na5, Na6, Na7) with distinct composition and thickness were deposited after a series of marine transgressions and regressions during the Upper Permian. The Na1 (300 m) locally developed in a lagoon environment. The thick Na2 (over 500 m) was widely deposited in the whole basin. The Na3, Na4, Na5, Na6 and Na7 decreased progressively in thickness and distribution. These salts should have been moved as a result of regional tectonics taking place from Triassic to Early Cenozoic, which changes the original distribution of salts, resulting in the formation of different salt structures (pillows and diapirs). Salt movement was more intensive in central and southern parts of the basin forming narrow and widely-distributed salt diapirs, while it was less intensive in the northern parts where salt pillows are the major structure. The salt meadow and saline springs are also present, which are attributed to the salinization of the groundwater. By this study, we review the history and structure development of the Zechstein salt in the NEGB by associating each individual study and figure out the common and regional characters of the salt in this region.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Zhang, M. Krause and M. Mutti, "The Formation and Structure Evolution of Zechstein (Upper Permian) Salt in Northeast German Basin: A Review," Open Journal of Geology, Vol. 3 No. 8, 2013, pp. 411-426. doi: 10.4236/ojg.2013.38047.


[1] M. Hannemann and W. Schirrmeister, “Palaohydrogeologische Grundlagen der Entwicklung der Süβ-/Salzwassergrenze und der Salzwasseraustritte in Brandenburg [Paleo-Hydrogeological Principles of the Development of the Fresh-/Saltwater Interface and the Occurrence of Saline Springs in Brandenburg],” Bandenburgische Geowissenschaftliche Beitrage, Vol. 5, 1998, pp. 61-72.
[2] Y. I. Galushkin and G. Yakovlev, “Influence of Saline Deposits on the Conditions of Petroleum Generation in the Rocks Underlying the Salt Complex of the Northern Part of the Precaspian Basin,” Geochemistry International, Vol. 45, No. 7, 2007, pp. 625-637. 16702907070014
[3] S. Grassmann, B. Cramer, G. Delisle, J. Messner and J. Winsemann, “Geological History and Petroleum System of the Mittelplate Oil Field, Northern Germany,” International Journal of Earth Sciences, Vol. 94, No. 5-6, 2005, pp. 979-989.
[4] G. H. Isaksen, “Central North Sea Hydrocarbon Systems: Generation, Migration, Entrapment, and Thermal Degradation of Oil and Gas,” AAPG Bulletin, Vol. 88, No. 11, 2004, pp. 1545-1572.
[5] L. Tang, Z. Jin, C. Jia, X. Pi and S. Chen, “Poly-Phase Salt Tectonics and Hydrocarbon Accumulation in Tarim Superimposed Basin, Northwest China,” Science in China Series D: Earth Sciences, Vol. 47, Suppl. 2, 2004, pp. 104-113.
[6] K. Glennie, “Recent Advances in Understanding the Southern North Sea Basin: A Summary,” Geological Society, London, Special Publications, Vol. 123, No. 1, 1997, pp. 17-29.
[7] H. H. Posey and J. R. Kyle, “Fluid-Rock Interactions in the Salt Dome Environment: An Introduction and Review,” Chemical Geology, Vol. 74, No. 1, 1988, pp. 1-24.
[8] M. Scheck, U. Bayer and B. Lewerenz, “Salt Movements in the Northeast German Basin and Its Relation to Major Post-Permian Tectonic Phases—Results from 3D Structural Modelling, Backstripping and Reflection Seismic Data,” Tectonophysics, Vol. 361, No. 3, 2003, pp. 277-299.
[9] J.-D. Van Wees, R. Stephenson, P. Ziegler, U. Bayer, T. McCann, R. Dadlez, R. Gaupp, M. Narkiewicz, F. Bitzer and M. Scheck, “On the Origin of the Southern Permian Basin, Central Europe,” Marine and Petroleum Geology, Vol. 17, No. 1, 2000, pp. 43-59. 00052-5
[10] M. Scheck, U. Bayer and B. Lewerenz, “Salt Redistribution during Extension and Inversion Inferred from 3D Backstripping,” Tectonophysics, Vol. 373, No. 1, 2003, pp. 55-73. 1016/S0040-1951(03)00283-X
[11] M. Scheck and U. Bayer, “Evolution of the Northeast German Basin—Inferences from a 3D Structural Model and Subsidence Analysis,” Tectonophysics, Vol. 313, No. 1, 1999, pp. 145-169.
[12] T. Peryt, “Basal Zechstein in Southwestern Poland: Sedimentation, Diagenesis, and Gas Accumulation,” Sediment-Hosted Stratiform Copper Deposits: Geological Association of Canada Special Paper, Vol. 36, 1989, pp. 103-625.
[13] T. M. Peryt “Chronostratigraphical and Lithostratigraphical Correlations of the Zechstein Limestone in Central Europe,” Geological Society, London, Special Publications, Vol. 22, No. 1, 1986, pp. 203-209.
[14] J. Paul, “Stratigraphy of the Lower Werra Cycle (Z1) in West Germany (Preliminary Results),” Geological Society, London, Special Publications, Vol. 22, No. 1, 1986, pp. 149-156.
[15] J. Paul, “Environmental Analysis of Basin and Schwellen Facies in the Lower Zechstein of Germany,” Geological Society, London, Special Publications, Vol. 22, No. 1, 1986, pp. 143-147.
[16] C. Strohmenger, E. Voigt and J. Zimdars, “Sequence Stratigraphy and Cyclic Development of Basal Zechstein Carbonate-Evaporite Deposits with Emphasis on Zechstein 2 Off-Platform Carbonates (Upper Permian, Northeast Germany),” Sedimentary Geology, Vol. 102, No. 1, 1996, pp. 33-54.
[17] C. Strohmenger and C. Strauss, “Sedimentology and Palynofacies of the Zechstein 2 Carbonate (Upper Permian, Northwest Germany): Implications for Sequence Stratigraphic Subdivision,” Sedimentary Geology, Vol. 102, No. 1, 1996, pp. 55-77. 00064-X
[18] D. B. Smith, “Rapid Marine Transgressions and Regressions of the Upper Permian Zechstein Sea,” Journal of the Geological Society, Vol. 136, No. 2, 1979, pp. 155-156. gsjgs.136.2.0155
[19] P. Ziegler, “Geological Atlas of Western and Central Europe: Shell Internationale Petroleum Maatschappij BV, Geological Society of London,” Elsevier, Amsterdam, 1990.
[20] J. Taylor, “Upper Permian-Zechstein,” K. W. Glennie, Ed., Blackwell, Oxford, 1998, pp. 174-211.
[21] R. Meinhold and H. Reinhardt, “Halokinese im Nordostdeutschen Tiefland,” Berichte der Deutschen Gesellschaft für Geologische Wissenschaften, Vol. 12, No. 3-4, 1967, pp. 329-353.
[22] N. Rühberg, “Probleme der Zechsteinsalzbewegung,” Zeitschrift für Angewandte Geologie, Vol. 22, No. 9, 1976, pp. 413-420.
[23] G. Richter-Bernburg, “Deformation within Salt Bodies,” In: Dynamical Geology of Salt and Related Structures, Academic Press Inc., New York, 1987, pp. 39-75.
[24] A. Goudie, “Salt Tectonics and Geomorphology,” Progress in Physical Geography, Vol. 13, No. 4, 1989, pp. 597-605.
[25] U. Bayer, M. Scheck and M. Koehler, “Modeling of the 3D Thermal Field in the Northeast German Basin,” Geologische Rundschau, Vol. 86, No. 2, 1997, pp. 241-251. 5310050137
[26] U. Bayer, M. Scheck, W. Rabbel, C. Krawczyk, H.-J. Gotze, M. Stiller, T. Beilecke, A.-M. Marotta, L. BarrioAlvers and J. Kuder, “An Integrated Study of the NE German Basin,” Tectonophysics, Vol. 314, No. 1, 1999, pp. 285-307.
[27] M. Scheck, L. Barrio-Alvers, U. Bayer and H.-J. Gotze, “Density Structure of the Northeast German Basin: 3D Modelling along the DEKORP Line BASIN96,” Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, Vol. 24, No. 3, 1999, pp. 221-230.
[28] D. Kossow and C. M. Krawczyk, “Structure and Quantification of Processes Controlling the Evolution of the Inverted NE-German Basin,” Marine and Petroleum Geology, Vol. 19, No. 5, 2002, pp. 601-618.
[29] D. Kossow, C. Krawczyk, T. McCann, M. Strecker and J. F. Negendank, “Style and Evolution of Salt Pillows and Related Structures in the Northern Part of the Northeast German Basin,” International Journal of Earth Sciences, Vol. 89, No. 3, 2000, pp. 652-664. 5310000116
[30] M. B. Hansen, M. Scheck-Wenderoth, C. Hübscher, H. Lykke-Andersen, A. Dehghani, B. Hell and D. Gajewski, “Basin Evolution of the Northern Part of the Northeast German Basin—Insights from a 3D Structural Model,” Tectonophysics, Vol. 437, No. 1, 2007, pp. 1-16. j.tecto.2007.01.010
[31] F. Trusheim, “Mechanism of Salt Migration in Northern Germany,” AAPG Bulletin, Vol. 44, No. 9, 1960, pp. 1519-1540.
[32] M. B. Hansen, “Structure and Evolution of the Northern Part of the Northeast German Basin Revealed from Seismic Interpretation and 3D Structural Modelling,” Ph.D. Thesis, University of Hamburg, Hamburg, 2005.
[33] M. C. Geluk, W. Paar and P. Fokker, “Salt,” In: T. E. Wong, D. A. J. Batjes and J. De Jager, Eds., Geology of the Netherlands, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, 2007, pp. 283-294.
[34] S. Stovba and R. Stephenson, “Style and Timing of Salt Tectonics in the Dniepr-Donets Basin (Ukraine): Implications for Triggering and Driving Mechanisms of Salt Movement in Sedimentary Basins,” Marine and Petroleum Geology, Vol. 19, No. 10, 2002, pp. 1169-1189.
[35] D. Waltham, “Why Does Salt Start to Move?” Tectonophysics, Vol. 282, No. 1, 1997, pp. 117-128.
[36] I. Davison, I. Alsop and D. Blundell, “Salt Tectonics: Some Aspects of Deformation Mechanics,” Geological Society, London, Special Publications, Vol. 100, No. 1, 1996, pp. 1-10.
[37] M. Hughes and I. Davison, “Geometry and Growth Kinematics of Salt Pillows in the Southern North Sea,” Tectonophysics, Vol. 228, No. 3, 1993, pp. 239-254. (93)90343-I
[38] M. Jackson and B. Vendeville, “Regional Extension as a Geologic Trigger for Diapirism,” Geological Society of America Bulletin, Vol. 106, No. 1, 1994, pp. 57-73. (1994)106<0057:REAAGT>2.3.CO;2
[39] M. Jenyon, “Overburden Deformation Related to the Pre-Piercement Development of Salt Structures in the North Sea,” Journal of the Geological Society, Vol. 145, No. 3, 1988, pp. 445-454.
[40] T. Nalpas and J.-P. Brun, “Salt Flow and Diapirism Related to Extension at Crustal Scale,” Tectonophysics, Vol. 228, No. 3, 1993, pp. 349-362.
[41] D. Schultz-Ela, M. T. Jackson and B. Vendeville, “Mechanics of Active Salt Diapirism,” Tectonophysics, Vol. 228, No. 3, 1993, pp. 275-312.
[42] S. A. Stewart and M. P. Coward, “Synthesis of Salt Tectonics in the Southern North Sea, UK,” Marine and Petroleum Geology, Vol. 12, No. 5, 1995, pp. 457-475. 91502-G
[43] B. C. Vendeville, “A New Interpretation of Trusheim’s Classic Model of Salt-Diapir Growth,” Transactions-Gulf Coast Association of Geological Societies, Vol. 52, 2002, pp. 943-952.
[44] B. C. Vendeville and M. P. Jackson, “The Rise of Diapirs during Thin-Skinned Extension,” Marine and Petroleum Geology, Vol. 9, No. 4, 1992, pp. 331-354. 90047-I
[45] Dekorp-Basin Research Group, “Deep Crustal Structure of the Northeast German Basin: New DEKORP-BASIN’96 Deep-Profiling Results,” Geology, Vol. 27, No. 1, 1999, pp. 55-58.<0055:DCSOTN>2.3.CO;2
[46] R. Benek, W. Kramer, T. McCann, M. Scheck, J. Negendank, D. Korich, H.-D. Huebscher and U. Bayer, “PermoCarboniferous Magmatism of the Northeast German Basin,” Tectonophysics, Vol. 266, No. 1, 1996, pp. 379-404.
[47] C. Breitkreuz and A. Kennedy, “Magmatic Flare-Up at the Carboniferous/Permian Boundary in the NE German Basin Revealed by SHRIMP Zircon Ages,” Tectonophysics, Vol. 302, No. 3, 1999, pp. 307-326.
[48] M. Scheck, “3D Structural Modeling and Evolution of the Northeast German Basin,” Terra Nova, Vol. 9, 1997, p. 185.
[49] H. Rieke, D. Kossow, T. McCann and C. Krawczyk, “Tectono-Sedimentary Evolution of the Northernmost Margin of the NE German Basin between Uppermost Carboniferous and Late Permian (Rotliegend),” Geological Journal, Vol. 36, No. 1, 2001, pp. 19-37.
[50] A. Schmidt Mumm and M. Wolfgramm, “Diagenesis and fluid Mobilisation during the Evolution of the North German Basin—Evidence from Fluid Inclusion and Sulphur Isotope Analysis,” Marine and Petroleum Geology, Vol. 19, No. 3, 2002, pp. 229-246. 00015-6
[51] P. Moller, S. Weise, M. Tesmer, P. Dulski, A. Pekdeger, U. Bayer and F. Magri, “Salinization of Groundwater in the North German Basin: Results from Conjoint Investigation of Major, Trace Element and Multi-Isotope Distribution,” International Journal of Earth Sciences, Vol. 97, No. 5, 2008, pp. 1057-1073.
[52] M. Tesmer, P. Moller, S. Wieland, C. Jahnke, H. Voigt and A. Pekdeger, “Deep Reaching Fluid Flow in the North East German Basin: Origin and Processes of Groundwater Salinisation,” Hydrogeology Journal, Vol. 15, No. 7, 2007, pp. 1291-1306.
[53] H.-D. Vosteen, V. Rath, A. Schmidt-Mumm and C. Clauser, “The Thermal Regime of the Northeastern-German Basin from 2-D Inversion,” Tectonophysics, Vol. 386, No. 1, 2004, pp. 81-95.
[54] M. Menning, “A Numerical Time Scale for the Permian and Triassic Periods: An Integrated Time Analysis,” In: The Permian of Northern Pangea: Paleogeography, Paleoclimates, Stratigraphy, Springer Berlin Heidelberg, Berlin, 1995, pp. 77-97.
[55] H. Lippolt, S. Hautmann and J. Pilot, “40 Ar/39 Ar-Dating of Zechstein Potash Salts: New Constraints on the Numerical Age of the Latest Permian and the P-Tr Boundary,” EUG (European Union of Geosciences) VII, Terra Abstract, Vol. 7, 1993, p. 591.
[56] K. Glennie, “Development of NW Europe’s Southern Permian Gas Basin,” Geological Society, London, Special Publications, Vol. 23, No. 1, 1986, pp. 3-22.
[57] J. Warren, “Evaporites: Their Evolution and Economics,” Blackwell Science, Oxford, 1999.
[58] G. Richter-Bernburg, “Sedimentological Problems of Saline Deposits,” Geology of Saline Deposits: Paris, UNESCO, Vol. 7, 1972, pp. 33-39.
[59] W. Rockel and W. Ziegenhardt, “Strukturelle Kriterien der Lagunenbildung im tieferen Zechstein im Raum südlich Berlin,” Zeitschrift für Geologische Wissenschaften, Vol. 7, 1979, pp. 847-860.
[60] J. Krzysztof, “An Overview of the Carboniferous and Permian in Poland,” Proceedings of the XIII International Congress on the Carboniferous and Permian: Proceedings, Vol. 157, 1997, pp. 31-49.
[61] M. Geluk, “Permian Geology of the Netherlands,” Royal Netherlands Academy of Arts and Sciences, Amsterdam, 2007, pp. 63-84.
[62] D. Franke, “Regionale Geologie von Ostdeutschland-Ein Worterbuch,” 2009.
[63] T. Peryt and V. Kovalevich, “Origin of Anhydrite Pseudomorphs after Gypsum Crystals in the Oldest Halite (Werra, Upper Permian, Northern Poland),” Zentralblatt für Geologie und Pal?ontologie, Vol. 1, 1996, pp. 337-356.
[64] G. Czapowski, “Sedimentary Facies in the Oldest Rock Salt (Na1) of the Leba Elevation (Northern Poland),” Springer, Berlin, 1987, pp. 207-224.
[65] D. Cendón, J. Pueyo, C. Ayora, C. Taberner and T. Peryt, “Sulfate Starved Subbasins: Implications for Permian Seawater Composition,” Geochimica et Cosmochimica Acta Supplement, Vol. 70, 2006, p. 91.
[66] G. Czapowski, “Facies characteristics and Distribution of the Zechstein [Upper Permian] Salt Deposits of PZ3 [Leine] Cycle in Poland,” Bulletin of the Polish Academy of Sciences. Earth Sciences, Vol. 41, No. 4, 1993, pp. 229-237.
[67] S. Vovnyuk and G. Czapowski, “Generation of Primary Sylvite: The Fluid Inclusion Data from the Upper Permian (Zechstein) Evaporites, SW Poland,” Geological Society, London, Special Publications, Vol. 285, No. 1, 2007, pp. 275-284.
[68] M. C. Geluk, “Stratigraphy and Tectonics of Permo-Triassic Basins in the Netherlands and Surrounding Areas,” Ph.D. Thesis, Utrecht University, Utrecht, 2005.
[69] R. Wagner, “Stratigraphy and Evolution of the Zechstein Basin in the Polish Lowland,” Państwowy Instytut Geologiczny, Warszawa, 1994, pp. 1-75.
[70] M. Hiete, U. Berner, C. Heunisch and H.-G. Rohling, “A High-Resolution Inorganic Geochemical Profile across the Zechstein-Buntsandstein Boundary in the North German Basin,” Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, Vol. 157, No. 1, 2006, pp. 77-105. 1860-1804/2006/0157-0077
[71] M. E. Tucker, “Sequence Stratigraphy of Carbonate-Evaporite Basins: Models and Application to the Upper Permian (Zechstein) of Northeast England and Adjoining North Sea,” Journal of the Geological Society, Vol. 148, No. 6, 1991, pp. 1019-1036.
[72] W. B. Heroy, “Thermicity of Salt as a Geologic Function,” Geological Society of America Special Papers, Vol. 88, 1968, pp. 619-630.
[73] F. Lotze, “Steinsalz und Kalisalze; I Teil (Allgemein-Geologischer Teil),” Berlin-Nikolassee, Gebriider Borntraeger, 1957.
[74] M. K. Jenyon, “Salt Tectonics,” Elsevier Applied Science Publishers, Barking, 1986.
[75] B. Vendeville and K. Nilsen, “Episodic Growth of Salt Diapirs Driven by Horizontal Shortening,” In: C. J. Travis, H. Harrison, M. R. Hudec, B. C. Vendeville, F. J. Peel and B. F. Perkins, Eds., Salt, Sedimeng, and Hydrocarbons. Society of Economic and Paleontologists and Mineralogists, Gulf Coast Section, 16th Annual Research Foundation Conference, pp. 285-295.
[76] G. Einsele, “Sedimentary Basins: Evolution, Facies, and Sediment Budget,” Springer Verlag, Berlin, 2000.
[77] D. H. Kupfer, “Shear Zones inside Gulf Coast Salt Stocks Help to Delineate Spines of Movement,” AAPG Bulletin, Vol. 60, No. 9, 1976, pp. 1434-1447.
[78] G. Richter-Bernburg, “Salt Tectonics, Interior Structures of Salt Bodies,” Bulletin Centres Recherches Exploration-Production Elf Aquitaine, Vol. 4, 1980, pp. 373-389.
[79] H. A. Koyi, “Modeling the Influence of Sinking Anhydrite Blocks on Salt Diapirs Targeted for Hazardous Waste Disposal,” Geology, Vol. 29, No. 5, 2001, pp. 387-390.<0387:MTIOSA>2.0.CO;2
[80] C. Talbot and P. Aftabi, “Geology and Models of Salt Extrusion at Qum Kuh, Central Iran,” Journal of the Geological Society, Vol. 161, No. 2, 2004, pp. 321-334.
[81] L. Reuning, J. Schoenherr, A. Heimann, J. L. Urai, R. Littke, P. Kukla and Z. Rawahi, “Constraints on the Diagenesis, Stratigraphy and Internal Dynamics of the Surface-Piercing Salt Domes in the Ghaba Salt Basin (Oman): A Comparison to the Ara Formation in the South Oman Salt Basin,” GeoArabia, Vol. 14, No. 3, 2009, pp. 83-120.
[82] J. Schoenherr, Z. Schléder, J. L. Urai, R. Littke and P. A. Kukla, “Deformation Mechanisms of Deeply Buried and Surface-Piercing Late Pre-Cambrian to Early Cambrian Ara Salt from interior Oman,” International Journal of Earth Sciences, Vol. 99, No. 5, 2010, pp. 1007-1025. 10.1007/s00531-009-0443-3
[83] H. Van Gent, J. L. Urai and M. De Keijzer, “The Internal Geometry of Salt Structures—A First Look Using 3D Seismic Data from the Zechstein of the Netherlands,” Journal of Structural Geology, Vol. 33, No. 3, 2011, pp. 292-311.
[84] C. Talbot, “Halokinesis and Thermal Convection,” Nature, Vol. 273, 1978, pp. 739-741.
[85] H. Ramberg and H. Ramberg, “Gravity, Deformation and the Earth’s Crust: In Theory, Experiments and Geological Application,” Academic Press, London, 1981.
[86] M. Jackson and C. Talbot, “External Shapes, Strain Rates, and Dynamics of Salt Structures,” Geological Society of America Bulletin, Vol. 97, No. 3, 1986, pp. 305-323. 0016-7606(1986)97<305:ESSRAD>2.0.CO;2
[87] G. Schwab, “Palaomobilitat der Norddeutsch-Polnischen Senke,” Unpublished Thesis B, Akademie der Wissenschaften der DDR, Potsdam, 1985.
[88] H. Kiersnowski, J. Paul, T. M. Peryt and D. B. Smith, “Facies, Paleogeography, and Sedimentary History of the Southern Permian Basin in Europe,” Springer, Berlin, 1995, pp. 119-136.
[89] Y. Maystrenko, U. Bayer and M. Scheck-Wenderoth, “The Glueckstadt Graben, a Sedimentary Record between the North and Baltic Sea in North Central Europe,” Tectonophysics, Vol. 397, No. 1, 2005, pp. 113-126.
[90] Y. Maystrenko, U. Bayer and M. Scheck-Wenderoth, “Structure and Evolution of the Glueckstadt Graben due to Salt Movements,” International Journal of Earth Sciences, Vol. 94, No. 5-6, 2005, pp. 799-814.
[91] J. Lamarche, M. Scheck and B. Lewerenz, “Heterogeneous Tectonic Inversion of the Mid-Polish Trough Related to Crustal Architecture, Sedimentary Patterns and Structural Inheritance,” Tectonophysics, Vol. 373, No. 1, 2003, pp. 75-92.
[92] J. Lamarche and W. M. Scheck, “3D Structural Model of the Polish Basin,” Tectonophysics, Vol. 397, No. 1, 2005, pp. 73-91.
[93] G. Remmelts, “Fault-Related Salt Tectonics in the Southern North Sea, the Netherlands,” In: D. G. R. M. P. A. Jackson and S. Snelson, Eds., AAPG Memoir 65, 1995. pp. 261-272. 10.1016/j.tecto.2004.10.013
[94] G. Remmelts, “Salt Tectonics in the Southern North Sea, the Netherlands,” Springer, Berlin, 1996, pp. 143-158.
[95] N. Anderson and R. Brown, “Dissolution and Deformation of Rock Salt, Stetter Area, Southeastern Albert,” Canadian Journal of Exploration Geophysics, Vol. 28, No. 2, 1992, pp. 128-136.
[96] F. Magri, U. Bayer, V. Clausnitzer, C. Jahnke, H.-J. Diersch, J. Fuhrmann, P. M?ller, A. Pekdeger, M. Tesmer and H. Voigt, “Deep Reaching Fluid Flow Close to Convective Instability in the NE German Basin—Results from Water Chemistry and Numerical Modelling,” Tectonophysics, Vol. 397, No. 1, 2005, pp. 5-20.
[97] F. Magri, U. Bayer, C. Jahnke, V. Clausnitzer, H. Diersch, J. Fuhrman, P. Moller, A. Pekdeger, M. Tesmer and H. Voigt, “Fluid-Dynamics Driving Saline Water in the North East German Basin,” International Journal of Earth Sciences, Vol. 94, No. 5-6, 2005, pp. 1056-1069.
[98] F. Magri, U. Bayer, A. Pekdeger, R. Otto, C. Thomsen and U. Maiwald, “Salty Groundwater Flow in the Shallow and Deep Aquifer Systems of the Schleswig-Holstein Area (North German Basin),” Tectonophysics, Vol. 470, No. 1, 2009, pp. 183-194.
[99] F. Magri, U. Bayer, M. Tesmer, P. Moller and A. Pekdeger, “Salinization Problems in the NEGB: Results from Thermohaline Simulations,” International Journal of Earth Sciences, Vol. 97, No. 5, 2008, pp. 1075-1085.
[100] A. T. Grube, “Geogene Grundwasserversalzung in den Poren-Grundwasserleitern Norddeutschlands und ihre Bedeutung für die Wasserwirtschaft [Geogenic Groundwater Salinisation of Porous Aquifer Systems and Its Impact on Water Management],” DVGW-Technologiezentrum Wasser (TZW), Karlsruhe, 2000.
[101] A. Grube and B. Lotz, “Geological and Numerical Modeling of Geogenic Salinization in the Area of the Lübeck Basin (North Germany),” 18th Salt Water Intrusion Meeting, Cartagena, 31 May-3 June 2004, pp. 183-195.
[102] W. Kloppmann, P. Négrel, J. Casanova, H. Klinge, K. Schelkes and C. Guerrot, “Halite Dissolution Derived Brines in the Vicinity of a Permian Salt Dome (N German Basin). Evidence from Boron, Strontium, Oxygen, and Hydrogen Isotopes,” Geochimica et Cosmochimica Acta, Vol. 65, No. 22, 2001, pp. 4087-4101.
[103] A. Nishri, H. Herbert, N. Jockwer and W. Stichler, “The Geochemistry of Brines and Minerals from the Asse Salt Mine, Germany,” Applied Geochemistry, Vol. 3, No. 3, 1988, pp. 317-332. 10.1016/0883-2927(88)90109-6
[104] E. Warren and P. Smalley, “Spatial Variations in North Sea Formation Water Composition,” Water Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction/WRI-7, Park City, 1992, pp. 1129-1132.
[105] Z. A. Berner, D. Stüben, M. A. Leosson and H. Klinge, “Sand O-Isotopic Character of Dissolved Sulphate in the Cover Rock Aquifers of a Zechstein Salt Dome,” Applied Geochemistry, Vol. 17, No. 12, 2002, pp. 1515-1528.
[106] M. Tesmer, R. Otto, A. Pekdeger, P. Moller, U. Bayer, F. Magri, J. Fuhrmann, G. Enchery, C. Jahnke and H. J. Voigt, “Migration Paths and Hydrochemical Processes of Groundwater Salinization in Different Aquifer Systems of the North German Basin,” Terra Nostra, Vol. 5, 2005, pp. 123-126.
[107] W. Schirrmeister, “Aus der Literatur überlieferte Angaben über Natürliche Salzwasseraustritte an der GrundWasseroberflache/Gelandeoberaache in Bran-Denburg,” Brandenburgische Geowissenschaf tliche Beitrage, Vol. 3, 1996, pp. 94-96.
[108] Y. Küster, “Bromide Distribution Characteristics in Bedded and Domal Rock Salts of the Stassfurt Formation (Zechstein 2): Implications for the Influence of Salt Migration-Related Processes,” Geophysical Research Abstracts, Vol. 9, 2007, Article ID: 03369.
[109] Y. Küster, M. Schramm, O. Bornemann and B. Leiss, “Bromide Distribution Characteristics of Different Zechstein 2 Rock Salt Sequences of the Southern Permian Basin: A Comparison between Bedded and Domal Salts,” Sedimentology, Vol. 56, No. 5, 2009, pp. 1368-1391. j.1365-3091.2008.01038.x

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.