Share This Article:

Model-Measurement Comparison of Ammonia Bi-Directional Air-Surface Exchange Fluxes over Agricultural Fields

Abstract Full-Text HTML Download Download as PDF (Size:388KB) PP. 465-474
DOI: 10.4236/acs.2013.34048    3,810 Downloads   6,235 Views   Citations

ABSTRACT

Modeled and measured bi-directional fluxes (BDFs) of ammonia (NH3) were compared over fertilized soybean and corn canopies for three intensive sampling periods: the first, during the summer of 2002 in Warsaw, North Carolina (NC), USA; and the second and third during the summer of 2007 in Lillington, NC. For the first and the third experimental periods, the BDF model produced reasonable diurnal flux patterns. The model also produced correct flux directions (emission and dry deposition) and magnitudes under dry and wet canopy conditions and during day and nighttime for these two periods. However, the model fails to produce the observed very high upward fluxes from the second sampling period due to the fertilization application (and thus being much higher soil emission potentials in the field than the default model values), although this can be improved by adjusting model input of soil emission potentials. Model-measurement comparison results suggest that the model is likely capable for improving long-term or regional scale ammonia predictions if implemented in chemical transport models replace the traditional dry deposition models, although modifications are needed when applying to specific situations.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Z. He, L. Wright and L. Zhang, "Model-Measurement Comparison of Ammonia Bi-Directional Air-Surface Exchange Fluxes over Agricultural Fields," Atmospheric and Climate Sciences, Vol. 3 No. 4, 2013, pp. 465-474. doi: 10.4236/acs.2013.34048.

References

[1] A. S. Ansari and S. N. Pandis, “Response of Inorganic PM to Precursor Concentrations,” Environmental Science and Technology, Vol. 32, No. 18, 1998, pp. 2706-2714. http://dx.doi.org/ 10.1021/ es971130j
[2] C. L. Blanchard and G. M. Hidy, “Effects of Changes in Sulfate, Ammonia, and Nitric Acid on Particulate Nitrate Concentrations in the Southeastern United States,” Journal of the Air and Waste Management Association, Vol. 53, No. 3, 2003, pp. 283-290. http://dx.doi.org/10.1080/ 10473289. 2003.10466152
[3] D. V. Vayenas, S. Takahama, C. I. Davidson and S. N. Pandis, “Simulation of the Thermodynamics and Removal Processes in the Sulfate-Ammonia-Nitric Acid System during Winter: Implications for PM2.5 Control Strategies,” Journal of Geophysical Research D: Atmospheres, Vol. 110, No. D7, 2005, pp. 1-11. http://dx.doi.org/10.1029/2004JD005038
[4] B. J. Finlayson-Pitts and J. N. Pitts, “Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications,” Academic Press, San Deigo, 1999.
[5] R. A. Ellis, J. G. Murphy, M. Z. Markovic, T. C. Vandenboer, P. A. Makar, J. Brook and C. Mihele, “The Influence of Gas-Particle Partitioning and Surface-Atmosphere Exchange on Ammonia during BAQS-Met,” Atmospheric Chemistry and Physics, Vol. 11, No. 1, 2011, pp. 133-145. http://dx.doi.org/ 10.5194/ acp-11-133-2011
[6] IPCC, “Climate Change 2001, Working Group I: The Scientific Basis, Ch5,” 2013. http://www.ipcc.ch/ ipccreports/ tar/wg1/
[7] A. Fangmeier, A. Hadwiger-Fangmeier, L. Van der Eerden and H.-J. J?ger, “Effects of Atmospheric Ammonia on Vegetation: A Review,” Environmental Pollution, Vol. 86, No. 1, 1994. pp. 43-82. http://dx.doi.org/10.1016/0269-7491(94)90008-6
[8] R. Bobbink, M. Hornung and J. G. M. Roelofs, “The Effects of Air-Borne Nitrogen Pollutants on Species Diversity in Natural and Semi-Natural European Vegetation,” Journal of Ecology, Vol. 86, No. 5, 1998, pp. 717-738. http://dx.doi.org/10.1046/j.1365-2745.1998.8650717.x
[9] J. N. Galloway, J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. Cowling and B. J. Cosby, “The Nitrogen Gas Cascade,” Bioscience, Vol. 53, 2003, pp. 341-356. http://dx.doi.org/10.1641/ 0006-3568(2003) 053 [0341:TNC] 2.0.CO;2
[10] S. V. Krupa, “Effects of Atmospheric Ammonia (NH3) on Terrestrial Vegetation: A Review,” Environmental Pollution, Vol. 124, No. 2, 2003, pp. 179-221. http://dx.doi.org/10.1016/S0269-7491(02)00434-7
[11] J. H. Seinfeld and S. N. Pandis, “Atmospheric Chemistry and Physics, from Air Pollution to Climate Change,” 2nd Edition, Wiley-Interscience Publication, Hoboken, 2006.
[12] J. W. Erisman, A. Bleeker, A. Hensen and A. Vermeulen, “Agriculture Air Quality in Europe and the Future Perspectives,” Atmospheric Environment, Vol. 42, No. 14, 2008, pp. 3209-3217. http://dx.doi.org/10.1016/ j.atmosenv.2007.04.004
[13] P. A. Makar, M. D. Moran, Q. Zheng, S. Cousineau, M. Sassi, A. Duhamel, M. Besner, D. Davignon, L.-P. Crevier and V. S. Bouchet, “Modelling the Impacts of Ammonia Emissions Reductions on North American Air Quality,” Atmospheric Chemistry and Physics, Vol. 9, No. 18, 2009, pp. 7183-7212. http://dx.doi.org/10.5194/acpd-9-5371-2009
[14] USEPA, “US Environmental Protection Agency: National Emission Inventory (NEI) Air Pollutant Emission Trends Data,” 2013. http://www.epa.gov/ttn/chief/trends/
[15] G. P. Draajers, W. P. Ivens, M. M. Bos and W. Bleuten, “The Contribution of Ammonia Emissions from Agriculture to the Deposition of Acidifying and Eutrophying Compounds onto Forests,” Environmental Pollution, Vol. 60, No. 1-2, 1989, pp. 55-66. http://dx.doi.org/10.1016/0269-7491(89)90220-0
[16] J. Walker, P. Spence, S. Kimbrough and W. Robarge, “Inferential Model Estimates of Ammonia Dry Deposition in the Vicinity of a Swine Production Facility,” Atmospheric Environment, Vol. 42, No. 14, 2008, pp. 3407-3418. http://dx.doi.org/10.1016/j.atmosenv.2007.06.004
[17] G. D. Farquhar, P. M. Firth, R. Wetselaar and B. Weir, “On the Gaseous Exchange of Anunonia between Leaves and the Environment: Determination of the Ammonia Compensation Point,” Plant Physiology, Vol. 66, No. 4, 1980, pp. 710-714. http://dx.doi.org/10.1104/pp.66.4.710
[18] M. A. Sutton, J. K. Schjorring, G. P. Wyers, J. H. Duyzer, P. Ineson and D. S. Powlson, “Plant-Atmosphere Exchange of Ammonia,” Philosophical Transactions—Royal Society of London A, Vol. 351, No. 1696, 1995, pp. 261-278. http://dx.doi.org/10.1098/rsta.1995.0033
[19] J. T. Walker, W. P. Robarge, Y. Wu and T. P. Meyers, “Measurement of Bi-Directional Ammonia Fluxes over Soybean Using the Modified Bowen-Ratio Technique,” Agricultural and Forest Meteorology, Vol. 138, No. 1-4, 2006, pp. 54-68. http://dx.doi.org/10.1016/j.agrformet.2006.03.011
[20] A., Mosier, C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger and O. Van Cleemput, “Closing the Global N2O Budget: Nitrous Oxide Emissions through the Agricultural Nitrogen Cycle: OECD/IPCC/IEA Phase II Development of IPCC Guidelines for National Greenhouse Gas Inventory Methodology,” Nutrient Cycling in Agroecosystems, Vol. 52, No. 2-3, 1998, pp. 225-248. http://dx.doi.org/10.1023/ A:1009740530221
[21] M. A. Sutton, J. K. Burkhardt, D. Guerin, E. Nemitz and D. Fowler, “Development of Resistance Models to Describe Measurements of Bi-Directional Ammonia SurfaceAtmosphere Exchange,” Atmospheric Environment, Vol. 32, No. 3, 1998, pp. 473-480. http://dx.doi.org/10.1016/S1352-2310(97)00164-7
[22] M. A. Sutton, D. Fowler and J. B. Moncrieff, “The Exchange of Atmospheric Ammonia with Vegetated Surfaces. I: Unfertilized Vegetation,” Quarterly Journal— Royal Meteorological Society, Vol. 119, No. 513, 1993, pp. 1023-1045. http://dx.doi.org/10.1002/qj.49711951309
[23] M. A. Sutton, D. Fowler, J. B. Moncrieff and R. L. Storeton-West, “The Exchange of Atmospheric Ammonia with Vegetated Surfaces. II: Fertilized Vegetation,” Quarterly Journal—Royal Meteorological Society, Vol. 119, No. 513, 1993, pp. 1047-1070. http://dx.doi.org/10.1002/qj.49711951310
[24] W. A. H. Asman, M. A. Button and J. K. Schj?rring, “Ammonia: Emission, Atmospheric Transport and Deposition,” New Phytologist, Vol. 139, No. 1, 1998, pp. 25-26. http://dx.doi.org/10.1021/es971130j
[25] E. Nemitz, C. Milford and M. A. Sutton, “A Two-Layer Canopy Compensation Point Model for Describing BiDirectional Biosphere-Atmosphere Exchange of Ammonia,” Quarterly Journal of the Royal Meteorological Society, Vol. 127, No. 573, 2001, pp. 815-833. http://dx.doi.org/10.1002/ qj.49712757306
[26] Y. Wu, J. Walker, D. Schwede, C. Peters-Lidard, R. Dennis and W. Robarge, “A New Model of Bi-Directional Ammonia Exchange between the Atmosphere and Biosphere: Ammonia Stomatal Compensation Point,” Agricultural and Forest Meteorology, Vol. 149, No. 2, 2009, pp. 263-280. http://dx.doi.org/10.1016/j.agrformet.2008.08.012
[27] J. O. Bash, J. T. Walker, G. G. Katul, M. R. Iones, E. Nemitz and W. P. Robarge, “Estimation of In-Canopy Ammonia Sources and Sinks in a Fertilized Zea mays Field,” Environmental Science and Technology, Vol. 44, No. 5, 2010, pp. 1683-1689. http://dx.doi.org/10.1021/es9037269
[28] R. W. Kruit, W. van Pul, F. Sauter, M. van den Broek, E. Nemitz, M. Sutton, M., Krol and A. Holtslag, “Modeling the Surface-Atmosphere Exchange of Ammonia,” Atmospheric Environment, Vol. 44, 2010, pp. 945-957. http://dx.doi.org/10.1016/j.atmosenv.2009.11.049
[29] R.-S. Massad, E. Nemitz and M. A. Sutton, “Review and Parameterisation of Bi-Directional Ammonia Exchange between Vegetation and the Atmosphere,” Atmospheric Chemistry and Physics, Vol. 10, No. 21, 2010, pp. 10359-10386. http://dx.doi.org/10.5194/acpd-10-10335-2010
[30] L. Zhang, L. P. Wright and W. A. H. Asman, “Bi-Directional Air-Surface Exchange of Atmospheric Ammonia: A Review of Measurements and a Development of a Big-Leaf Model for Applications in Regional-Scale AirQuality Models,” Journal of Geophysical Research D: Atmospheres, Vol. 115, No. 20, 2010, Article ID: 20310. http://dx.doi.org/10.1029/2009JD013589
[31] J. O. Bash, E. J. Cooter, R. L. Dennis, J. T. Walker and J. E. Pleim, “Evaluation of a Regional Air-Quality Model with Bidirectional NH3 Exchange Coupled to an Agroecosystem Model,” Biogeosciences, Vol. 10, 2013, pp. 1635-1645. http://dx.doi.org/10.5194/bg-10-1635-2013
[32] E. J. Cooter, J. O. Bash, V. Benson and L. Ran, “Linking Agricultural Crop Management and Air Quality Models for Regional to National-Scale Nitrogen Assessments,” Biogeosciences, Vol. 9, 2012, pp. 4023-4035. http://dx.doi.org/10.5194/bg-9-4023-2012
[33] J. E. Pleim, J. O. Bash, J. T. Walker and E. J. Cooter, “Development and Evaluation of an Ammonia Bidirectional Flux Parameterization for Air Quality Models,” Journal of Geophysical Research—Atmosphere, Vol. 118, No. 9, 2013, pp. 3794-3806. http://dx.doi.org/10.1002/jgrd.50262
[34] J. T. Walker, M. R. Jones, J. O. Bash, L. Myles, T. Meyers, D. Schwede, J. Herrick, E. Nemitz and W. Robarge, “Processes of Ammonia Air-Surface Exchange in a Fertilized Zea mays Canopy,” Biogeosciences, Vol. 10, 2013, pp. 981-998. http://dx.doi.org/10.5194/bg-10-981-2013
[35] C. R. Flechard, R.-S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz and M. A. Sutton, “Advances in Understanding, Models and Parameterisations of Biosphere-Atmosphere Ammonia Exchange,” Biogeosciences Discuss, Vol. 10, 2013, 5385-5497. http://dx.doi.org/10.5194/bgd-10-5385-2013
[36] L. Zhang, J. R. Brook and R. Vet, “On Ozone Dry Deposition—With Emphasis on Non-Stomatal Uptake and Wet Canopies,” Atmospheric Environment, Vol. 36, No. 30, 2002, pp. 4787-4799. http://dx.doi.org/10.1016/S1352-2310(02)00567-8
[37] C. R. Flechard, D. Fowler, M. A. Sutton and J. N. Cape, “A Dynamic Chemical Model of Bi-Directional Ammonia Exchange between Semi-Natural Vegetation and the Atmosphere,” Quarterly Journal of the Royal Meteorological Society, Vol. 125, No. 559, 1999, pp. 2611-2641. http://dx.doi.org/10.1002/ qj.49712555914
[38] E. Nemitz, M. A. Sutton, J. K. Schjoerring, S. Husted and G. P. Wyers, “Resistance Modelling of Ammonia Exchange over Oilseed Rape,” Agricultural and Forest Meteorology, Vol. 105, No. 4, 2000, pp. 405-425. http://dx.doi.org/10.1016/S0168-1923(00)00206-9
[39] G. Spindler, U. Teichmann and M. A. Sutton, “Ammonia Dry Deposition over Grassland-Micrometeorological FluxGradient Measurements and Bidirectional Flux Calculations Using an Inferential Model,” Quarterly Journal of the Royal Meteorological Society, Vol. 127, No. 573, 2001, pp. 795-814. http://dx. doi.org/10.1002/qj.49712757305
[40] M. Riedo, C. Milford, M. Schmid and M. A. Sutton, “Coupling Soil-Plant-Atmosphere Exchange of Ammonia with Ecosystem Functioning in Grasslands,” Ecological Modelling, Vol. 158, No. 1-2, 2002, pp. 83-110. http://dx.doi.org/10.1016/S0304-3800(02)00169-2
[41] L. Zhang, J. R. Brook and R. Vet, “A Revised Parameterization for Gaseous Dry Deposition in Air-Quality Models,” Atmospheric Chemistry and Physics, Vol. 3, No. 6, 2003, pp. 2067-2082. http://dx.doi.org/10.5194/acp-3-2067-2003
[42] E. Nemitz, M. A. Sutton, G. P. Wyers and P. A. C. Jongejan, “Gas-Particle Interactions above a Dutch Heathland: I. Surface Exchange Fluxes of NH3, SO2, HNO3 and HCl,” Atmospheric Chemistry and Physics, Vol. 4, 2004, pp. 989-1005. http://dx.doi.org/10.5194/acp-4-989-2004
[43] D. Wen, J. Lin, L. Zhang, R. Vet and M. D. Moran, “Modelling Atmospheric Ammonia and Ammonium Using a Stochastic Lagrangian Air Quality Model (STILT-Chem v0.7),” Geoscientific Model Development, Vol. 6, 2013, pp. 327-344. http://dx.doi.org/10.5194/gmd-6-327-2013

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.