Share This Article:

Application of Weakest Link Probabilistic Framework for Fatigue Notch Factor to Turbine Engine Materials

Abstract Full-Text HTML Download Download as PDF (Size:551KB) PP. 237-244
DOI: 10.4236/wjm.2013.35024    2,860 Downloads   4,801 Views   Citations


This paper is concerned with the extension of a recently developed probabilistic framework based on Weibull’s weakest link and extreme-value statistics to aero-engine materials like titanium alloy and nickel-base super alloys using simulation strategies that capture both the essence of notch root stress gradient and the complexity of realistic microstructures. In this paper, notch size effects and notch root inelastic behavior are combined with probability distributions of microscale stress-strain gradient and small crack initiation to inform minimum life design methods. A new approach which can be applied using crystal plasticity finite element or closed-form solution is also proposed as a more robust approach for determining fatigue notch factor than the existing classical methods. The fatigue notch factors predicted using the new framework are in good agreements with experimental results obtained from literature for notched titanium alloy specimens subjected to uniaxial cyclic loads with various stress ratio.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

O. Okeyoyin and G. Owolabi, "Application of Weakest Link Probabilistic Framework for Fatigue Notch Factor to Turbine Engine Materials," World Journal of Mechanics, Vol. 3 No. 5, 2013, pp. 237-244. doi: 10.4236/wjm.2013.35024.


[1] G. K. Haritos, T. Nicholas and D. B. Lanning, “Notch Size Effects in HCF Behavior of Ti-6Al-4V,” International Journal of Fatigue, Vol. 21, No. 7, 1999, pp. 643-652. doi:10.1016/S0142-1123(99)00023-7
[2] Y. Yamashita, Y. Ueda, H. Kuroki and M. Shinozaki, “Fatigue Life Prediction of Small Notched Ti-6Al-4V Specimens Using Critical Distance,” Engineering Fracture Mechanics, Vol. 77, No. 9, 2010, pp. 1439-1453. doi:10.1016/j.engfracmech.2010.04.001
[3] R. E. Peterson, “Stress Concentration Factors,” Wiley, New York, 1974.
[4] C. E. Philip and R. B. Heywood, “The Size Effect in Fatigue of Plain and Notched Steel Specimens under Reversed Direct Stress,” Proceedings of the Institution of Mechanical Engineers, Vol. 165, 1951, pp. 113-124. doi:10.1243/PIME_PROC_1951_165_014_02
[5] D. Bellett, D. Taylor, S. Marco, E. Mazzeo, J. Guillois and T. Pircher, “The Fatigue Behaviour of Three-Dimensional Stress Concentrations,” International Journal of Fatigue, Vol. 27, No. 3, 2005, pp. 207-221. doi:10.1016/j.ijfatigue.2004.07.006
[6] H. Neuber, “Theory of Stress Concentration in Shear Strained Prismatic Bodies with Arbitrary Non-Linear Stress Law,” Journal of Applied Mathematics and Mechanics, Vol. 28, No. 4, 1961, pp. 544-550. doi:10.1115/1.3641780
[7] H. Neuber, “Theory of Notch Stresses: Principle for Exact Stress Calculations,” Edwards, Ann Arbor, 1946.
[8] R. E. Peterson, “Notch sensitivity,” In: G. Sines and J. L. Waisman, Eds., Metal Fatigue, McGraw-Hill, New York, 1959, pp. 293-306.
[9] R. B. Heywood, “Stress Concentration Factors, Relating Theoretical and Practical Factors in Fatigue Loading,” Engineering, Vol. 179, 1955, pp. 146-148.
[10] Y. Weixing, “Stress Field Intensity Approach for Predicting Fatigue Life,” International Journal of Fatigue, Vol. 15, No. 3, 1993, pp. 243-246. doi:10.1016/0142-1123(93)90182-P
[11] T. Anderson, “Fracture Mechanics: Fundametals and Applications,” 3rd Edition, Taylor & Francis, Boca Raton, 2005.
[12] W. D. Musinski, “Novel Methods for Microstructure-Sensitive Probabilistic Fatigue Factor,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta, 2010.
[13] D. B. Lanning, T. Nicholas and G. K. Haritos, “On the Use of Critical Distance Theories for the Prediction of the High Cycle Fatigue Limit Stress in Notched Ti-6Al-4V,” International Journal of Fatigue, Vol. 27, No. 1, 2005, pp. 45-57. doi:10.1016/j.ijfatigue.2004.06.002
[14] G. M. Owolabi, R. Prasannavenkatesan and D. L. McDowell, “Probabilistic Framework for a Microstructure-Sensitive Fatigue Notch Factor,” International Journal of Fatigue, Vol. 32, No. 8, 2010, pp. 1378-1388. doi:10.1016/j.ijfatigue.2010.02.003
[15] R. A. Naik, D. B. Lanning, T. Nicholas and A. R. Kallmeyer, “A Critical Plane Gradient Approach for the Prediction of Notched HCF Life,” International Journal of Fatigue, Vol. 27, No. 5, 2005, pp. 481-492. doi:10.1016/j.ijfatigue.2004.10.003
[16] R. Morrissey, C. H. Goh and D. L. McDowell, “Microstructure-Scale Modeling of HCF Deformation,” Mechanics of Materials, Vol. 35, No. 3-6, 2005, pp. 295-311. doi:10.1016/S0167-6636(02)00282-X
[17] M. M. Shenoy, “Constitutive Modeling and Life Prediction in Ni-Base Superalloys,” Ph.D. Thesis, Georgia Institute of Technology, 2006.
[18] R. S. Kumar, A. J. Wang and D. L. McDowell, “Effects of Microstructure Variability on Intrinsic Fatigue Resistance of Nickel-Base Superalloys—A Computational Micromechanics Approach,” International Journal of Fracture, Vol. 137, No. 1-4, 2006, pp. 173-210. doi:10.1007/s10704-005-3149-y
[19] J. R. Mayeur and D. L. McDowell, “A Three-Dimensional Crystal Plasticity Model of Duplex Ti-6Al-4V,” International Journal of Plasticity, Vol. 23, No. 9, 2007, pp. 1457-1485. doi:10.1016/j.ijplas.2006.11.006
[20] R. J. Asaro, “Micromechanics of Crystals and Polycrystals,” Advances in Applied Mechanics, Vol. 23, 1983, pp. 1-115. doi:10.1016/S0065-2156(08)70242-4
[21] R. D. McGinty, “Multiscale Representation of Polycrystalline Inelasticity,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta, 2001.
[22] M. Zhang, J. Zhang and D. L. McDowell, “Microstructure-Based Crystal Plasticity Modeling of Cyclic Deformation of Ti-6Al-4V,” International Journal of Plasticity, Vol. 23, No. 8, 2007, pp. 1328-1348. doi:10.1016/j.ijplas.2006.11.009
[23] F. Bridier, D. L. McDowell, P. Villechaise and J. Mendez, “Crystal Plasticity Modeling of Slip Activity in Ti-6Al-4V under High Cycle Fatigue Loading,” International Journal of Plasticity, Vol. 25, No. 6, 2009, pp. 1066-1082. doi:10.1016/j.ijplas.2008.08.004

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.