Share This Article:

Artefacts in cone beam CT

Abstract Full-Text HTML Download Download as PDF (Size:1490KB) PP. 292-297
DOI: 10.4236/ojst.2013.35049    6,970 Downloads   10,654 Views   Citations

ABSTRACT

Cone beam computed tomography (CBCT) is the modern third dimension applied in the field of oral maxillofacial region. With lower radiation dose compared to conventional CT, its applications in dentistry has increased tremendously. Artefacts can seriously degrade the quality of computed tomographic (CBCT) images, sometimes to the point of making them diagnostically unusable. To optimize image quality, it is necessary to understand why artifacts occur and how they can be prevented or suppressed. CT artifacts originate from a range of sources; physical based, scanner based and patient based. This article highlights the causes of artefacts on CBCT images and methods to avoid them.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Jaju, P. , Jain, M. , Singh, A. and Gupta, A. (2013) Artefacts in cone beam CT. Open Journal of Stomatology, 3, 292-297. doi: 10.4236/ojst.2013.35049.

References

[1] Guerrero, M.E., Jacobs, R., Loubele, M., et al. (2006) State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clinical Oral Investigations, 10, 1-7. doi:10.1007/s00784-005-0031-2
[2] Drage, N.A. and Sivarajasingam, V. (2009) The use of cone beam computed tomography inthe management of isolated orbital floor fractures. British Journal of Oral and Maxillofacial Surgery, 47, 65-66. doi:10.1016/j.bjoms.2008.05.005
[3] Holberg, C., Steinhauser, S., Geis, P., et al. (2005) Conebeam computed tomography in orthodontics: Benefits and limitations. Journal of Orofacial Orthopedics, 66, 434-444. doi:10.1007/s00056-005-0519-z
[4] Garrett, B.J., Caruso, J.M., Rungcharassaeng, K., et al. (2008) Skeletal effects to the maxilla after rapid maxillary expansion assessed with cone-beam computed tomography. American Journal of Orthodontics and Dentofacial Orthopedics, 134, 8-9. doi:10.1016/j.ajodo.2008.06.004
[5] Misch, K.A., Yi, E.S. and Sarment, D.P. (2006) Accuracy of cone beam computed tomography for periodontal defect measurements. Journal of Periodontology, 77, 1261-1266. doi:10.1902/jop.2006.050367
[6] Honda, K., Arai, Y., Kashima, M., et al. (2004) Evaluation of the usefulness of the limited cone-beamCT(3DX) in the assessment of the thickness of the roof of the glenoid fossa of the temporomandibular joint. Dentomaxillofacial Radiology, 33, 391-395. doi:10.1259/dmfr/54316470
[7] Bianchi, S., Anglesio, S., Castellano, S., Rizzi, L. and Ragona, R. (2001) Absorbed doses and risk in implant planning: Comparison between spiral CT and cone beam CT. Dentomaxillofacial Radiology, 30, S28.
[8] Tsiklakis, K., Donta, C., Gavala, S., Karayianni, K., Ka-menopoulou, V. and Hourdakis, C.J. (2005) Dose reduc-tion in maxillofacial imaging using low dose cone beam CT. European Journal of Radiology, 56, 413-417. doi:10.1016/j.ejrad.2005.05.011
[9] Barrett, J.F. and Keat, N. (2004) Artifacts in CT: Recognition and avoidance. Radiographics, 24, 1679-1691. doi:10.1148/rg.246045065
[10] Hunter, A.K. and McDavid, W.C. (2012) Characterization and correction of cupping effect artefacts in cone beam CT. Dentomaxillofacial Radiology, 41, 217-223. doi:10.1259/dmfr/19015946
[11] Miracle, A.C. and Mukerji, S.K. (2009) Conebeam CT of the head and neck, Part 1: Physical principles. American Journal of Neuroradiology, 30, 1088-1095. doi:10.3174/ajnr.A1653
[12] McDavid, W.D., Waggener, R.G., Payne, W.H. and Dennis, M.J. (1975) Spectral effects on three-dimensional reconstruction from x-rays. Medical Physics, 2, 321-324. doi:10.1118/1.594200
[13] Brooks, R.A. and Di Chiro, G. (1976) Beam hardening in X-ray reconstructive tomography. Physics in Medicine and Biology, 21, 390-398. doi:10.1088/0031-9155/21/3/004
[14] Lehr, J.L. (1983) Truncated-view artifacts: Clinical importance on CT. American Journal of Roentgenology, 141, 183-191. doi:10.2214/ajr.141.1.183
[15] Bryant, J.A., Drage, N.A. and Richmond, S. (2008) Study of the scan uniformity from an i-CAT cone beam CT dental imaging system. Dentomaxillofacial Radiology, 37, 365-374. doi:10.1259/dmfr/13227258
[16] Katsumata, A., Hirukawa, A., Okumura, S., Naitoh, M., Fujishita, M., Ariji, E., et al. (2009) Relationship between density variability and imaging volume size in cone-beam computerized tomographic scanning of the maxillofacial region: An in vitro study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 107, 420-425. doi:10.1016/j.tripleo.2008.05.049
[17] Jennings, R.J. (1988) A method for comparing beamhardening filter materials for diagnostic radiology. Medical Physics, 15, 588-599. doi:10.1118/1.596210
[18] Meganck, J.A., Kozloff, K.M., Thornton, M.M., Broski, S.M. and Goldstein, S.A. (2009) Beam hardening artifacts in micro-CT scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone, 45, 1104-1116. doi:10.1016/j.bone.2009.07.078
[19] Graham, S.A., Moseley, D.J., Siewerdsen, J.H., et al. (2007) Compensators for dose and scatter management in cone-beam computed tomography. Medical Physics, 34, 2691-2703. doi:10.1118/1.2740466
[20] Gupta, R., Grasruck, M., Suess, C., et al. (2006) Ultrahigh resolution flat-panel volume CT: Fundamental principles, design architecture, and system characterization. European Radiology, 16, 1191-1205. doi:10.1007/s00330-006-0156-y
[21] Ning, R., Chen, B., Yu, R., et al. (2000) Flat panel detector-based cone-beam volume CT angiography imaging: System evaluation. IEEE Transactions on Medical Imaging, 19, 949-963. doi:10.1109/42.887842
[22] Neitzel, U. (1992) Grids or air gaps for scatter reduction in digital radiography: A model calculation. Medical Physics, 19, 475-481. doi:10.1118/1.596836
[23] Siewerdsen, J.H., Moseley, D.J., Bakhtiar, B., et al. (2004) The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flatpanel detectors. Medical Physics, 31, 3506-3520. doi:10.1118/1.1819789
[24] Nickoloff, E.L., Lu, Z.F., Dutta, A., et al. (2007) Influence of flat-panel fluoroscopic equipment variables on cardiac radiation doses. CardioVascular and Interventional Radiology, 30, 169-176. doi:10.1007/s00270-006-0096-6
[25] Orth, R.C., Wallace, M.J. and Kuo, M.D. (For the Technology Assessment Committee of the Society of Interventional Radiology) (2008) C-arm cone-beam CT: General principles and technical considerations for use in interventional radiology. Journal of Vascular and Interventional Radiology, 19, 814-820. doi:10.1016/j.jvir.2008.02.002
[26] Dorfler, A., Struffert, T., Engelhorn, T., et al. (2008) Rotati onal flat-panel computed tomography in diagnostic and interventional neuroradiology. Rofo, 180, 891-898.
[27] Jarry, G., Graham, S.A., Moseley, D.J., et al. (2006) Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Medical Physics, 33, 4320-4329. doi:10.1118/1.2358324

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.