Share This Article:

Added after Anoxia-Reoxigenation Stress, Genistein Rescues from Death the Rat Embryo Cortical Neurons

Abstract Full-Text HTML Download Download as PDF (Size:392KB) PP. 50-59
DOI: 10.4236/nm.2010.12008    3,996 Downloads   7,346 Views   Citations

ABSTRACT

Estrogens and phytoestrogens have neuroprotective effect against neuronal damage induced by cerebral ischemia /reperfusion (I/R) injury. In preceding studies, the phytoestrogen effects have been assessed by administration previous to the ischemic period, conditions which are unusual to apply to the treatment of human stroke. Here we present a study on neuroprotection afforded by genistein on rat embryo cortical neurons subjected to oxygen and glucose deprivation (OGD) followed by re-oxigenation, when added after the stress stimulus. At 1 and 2 h of OGD times and after 24 h of reperfusion, cell viability, necrotic, apoptotic and autophagic cell death and different parameters related to oxidative stress and mitochondrial dysfunction were measured in the absence and presence of 1 µM genisteine. We found an in-creasing loss of neuronal viability after 1-5 h of OGD which was only reversed in part by 24 h of reperfusion. These changes were preceded by increases in ROS generation, caspase-3 activation, LDH release and increase in LC3B lipi-dation, indicative of autophagia. Treatment with 1 µM genistein during the 24 h reperfusion significantly attenuated neuronal necrosis and autophagia induced by 1 and 2 h of OGD exposure. Genistein also decreased ROS generation and lipid-peroxidation induced by 2 h of OGD. These results suggest an important neuroprotective effect of genistein against transient post-ischemic-like conditions

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Carmen, A. José Luis, S. Eduardo, O. Ma Jesús and G. Ma Pilar, "Added after Anoxia-Reoxigenation Stress, Genistein Rescues from Death the Rat Embryo Cortical Neurons," Neuroscience and Medicine, Vol. 1 No. 2, 2010, pp. 50-59. doi: 10.4236/nm.2010.12008.

References

[1] M. P. Mattson and R. J. Mark. “Excitotoxicity and Excitoprotection in Vitro,” Advances in Neurology, Vol.71, 1996, pp 1-30.
[2] U. Dirnagl, C. Iadecola, and M. A. Moskowitz, “Pathobiology of Ischemic Stroke: An Integrated View,” Trends Neuroscience, Vol. 22, No. 9, 1999, pp 391-397. doi:10.1016/S0166-2236(99)01401-0
[3] L. A. Labiche and J. C. Grotta, “Clinical Trials for Cytoprotection in Stroke,” NeuroRx, Vol. 1, No. 1, 2004, pp. 46-70. doi:10.1602/neurorx.1.1.46
[4] M. A. de Leci?ana and J. A. Egido, “Estrogens as Neuroprotectants against Ischemic Stroke,” Cerebrovascular Diseases, Vol. 21 No. 2, 2006, pp. 48-53. doi:10.1159/000091703
[5] S. Suzuki, C. M. Brown and P. M. Wise, “Neuroprotective Effects of Estrogens Following Ischemic Stroke,” Frontiers in Neuroendocrinology, Vol. 30, No. 2, 2009, pp. 201-211. doi:10.1016/j.yfrne.2009.04.007
[6] C. L. Gibson, L. J. Gray, S. P. Murphy and P. M. Bath, “Estrogens and Experimental Ischemic Stroke: A Systematic Review,” Journal of Cerebral Blood Flow & Metabolism, Vol. 26, No. 9, 2006, pp. 1103-1113.
[7] T. Jover, H. Tanaka, A. Calderone, K. Oguro, M. V. Bennett, A. M. Etgen and R. S. Zukin, “Estrogen Protects against Global Ischemia-Induced Neuronal Death and Prevents Activation of Apoptotic Signaling Cascades in the Hippocampal Ca1,” Journal of Neuroscience, Vol. 22, No. 6, 2002, pp. 2115-2124.
[8] C. A. Singer, X. A. Figueroa-Masot, R. H. Batchelor and D. M. Dorsa. “The Mitogen-Activated Protein Kinase Pathway Mediates Estrogen Neuroprotection after Glutamate Toxicity in Primary Cortical Neurons,” Journal of Neuroscience, Vol. 19, No. 7, 1999, pp. 2455-2463.
[9] K. Honda, H. Sawada, T. Kihara, M. Urushitani, T. Nakamizo, A. Akaike and S. Shimohama, “Phosphatidylinositol 3-Kinase Mediates Neuroprotection by Estrogen in Cultured Cortical Neurons,” Journal of Neuroscience Research, Vol. 60, No. 3, 2000, pp. 321-327. doi:10.1002/(SICI)1097-4547(20000501)60:3<321::AID-JNR6>3.0.CO;2-T
[10] E. A. Sribnick, S. K. Ray, M. W. Nowak, L. Li and N. L. Banik, “17 Beta-Estradiol Attenuates Glutamate-Induced Apoptosis and Preserves Electrophysiologic Function in Primary Cortical Neurons,” Journal of Neuroscience Research, Vol. 76, No. 5, 2004, pp. 688-696. doi:10.1002/jnr.20124
[11] J. Nilsen, and R. D. Brinton, “Impact of Progestins on Estrogen-Induced Neuroprotection: Synergy by Progesterone and 19-Norprogesterone and Antagonism by Medroxyprogesterone Acetate,” Endocrinology, Vol. 13, No. 6, 2002, pp. 205-212. doi:10.1210/en.143.1.205
[12] H. Cimarosti, I. R.Siqueira, L. L. Zamin, M. Nassif, R. Balk, R. Frozza, C. Dalmaz, C. A. Netto and C. Salbego, “Neuroprotection and Protein Damage Prevention by Estradiol Replacement in Rat Hippocampal Slices Exposed to Oxygen-Glucose Deprivation,” Neurochemical Research, Vol. 30, 2005, pp. 583-589. doi:10.1007/s11064-005-2693-1
[13] S. Chen, J. Nilsen and R. D. Brinton, “Dose and Temporal Pattern of Estrogen Exposure Determines Neuroprotective Outcome in Hippocampal Neurons: Therapeutic Implications,” Endocrinology, Vol. 147, No. 11, 2006, pp. 5303-5313. doi:10.1210/en.2006-0495
[14] E. Candelario-Jalil, N. H. Mhadu, S. M. Al-Dalain, G. Martinez and O. S. León, “Time Course of Oxidative Damage in Differenr Brain Regions Following Transient Cerebral Ischemia in Gerbis,” Neurochemical Research, Vol. 41, No. 3, 2001, pp. 233-241.
[15] D. Amantea, R. Russo, G. Bagetta and M. T.Corasaniti. “From Clinical Evidence to Molecular Mechanisms Underlying Neuroprotection Afforded by Estrogens,” Pharmacol Research, Vol. 52, No. 2, 2005, pp. 119-132. doi:10.1016/j.phrs.2005.03.002
[16] V. N. Trieu and F. M. Uckun, “Genistein is Neuroprotective in Murine Models of Familial Amyotrophic Lateral Sclerosis and Stroke,” Biochemical and Biophysical Research Communications, Vol. 258, No. 3, 1999, pp 685- 688. doi:10.1006/bbrc.1999.0577
[17] D. A. Schreihofer and L. Redmond. “Soy Phytoestrogens are Neuroprotective against Stroke-Like Injury in Vitro,” Neuroscience, Vol. 158, No. 2, 2009, pp 602-609. doi:10.1016/j.neuroscience.2008.10.003
[18] M. C. Burguete, G. Torregrosa, F. J. Perez-Asensio, M. Castello-Ruiz, J. B. Salom, J. V. Gil and E. Alborch, “Dietary Phytoestrogens Improve Stroke Outcome after Transient Focal Cerebral Ischemia in Rats,” European Journal of Neuroscience, Vol. 23, No. 2, 2006, pp. 703-710. doi:10.1111/j.1460-9568.2006.04599.x
[19] L. Zhao, Q. Chen and R. D. Brinton, “Neuroprotective and Neurotrophic Efficacy of Phytoestrogens in Cultured Hippocampal Neurons,” Experimental Biology and Medicine, Vol. 227, No. 7, 2002, pp. 509-519.
[20] N. J. Linford and D. M Dorsa, “17 Beta-Estradiol and the Phytoestrogen Genistein Attenuate Neuronal Apoptosis Induced by the Endoplasmic Reticulum Calcium-Atpase Inhibitor Thapsigargin,” Steroids, Vol. 67, No. 13-14, 2002, pp. 1029-1040. doi:10.1016/S0039-128X(02)00062-4
[21] H. Zeng, Q. Chen and B. Zhao, “Genistein Ameliorates Beta- Amyloid Peptide (25-35)-Induced Hippocampal Neuronal Apoptosis,” Free Radical Biology and Medicine, Vol. 36, No. 2, 2004, pp. 180-188. doi:10.1016/j.freeradbiomed.2003.10.018
[22] H. Inoue, H. Ohtaki, T. Nakamachi, S. Shioda and Y. Okada, “Anion Channel Blockers Attenuated Delayed Neuronal Cell Death Induced by Transient Forebrain Ischemia,” Journal of Neuroscience Research, Vol. 85, No. 7, 2007, pp. 1427-1435. doi:10.1002/jnr.21279
[23] K. P. Ho, L. Li, L. Zhao and Z. M. Qjan, “Genistein Protects Primary Cortical Neurons from Iron Induced Lipid Peroxidation,” Molecular and Cellular Biochemistry, Vol. 247, No. 1-2, 2003, pp. 219-222. doi:10.1023/A:1024142004575
[24] H. W. Liang, S. F. Qju, J. Shen, L. N. Sun, J. Y. Wang, I. C. Bruce and Q. Xia, “Genistein Attenuates Oxidative Stress and Neuronal Damage Following Transient Global Cerebral Ischemia in Rat Hippocampus,” Neuroscience Letters, Vol. 438. No. 1, 2008, pp. 116-120. doi:10.1016/j.neulet.2008.04.058
[25] S. Figueroa, M. J. Oset-Gasque, C. Arce, C. Martínez- Honduvilla and M. P. González, “Mitochondrial Involvement in Nitric Oxide-Induced Cellular Death in Cortical Neurons in Culture,” Journal of Neuroscience Research, Vol. 83, No. 3, 2006, pp. 441-449. doi:10.1002/jnr.20739
[26] M. Bradford, “A Rapid Sensitive Method for the Quantization of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, 1976, pp. 248-254. doi:10.1016/0003-2697(76)90527-3
[27] L. Tenneti, D. M. D'Emilia, C. M. Troy and S.A Lipton, “Role of Caspases in N-Methyl-D-Aspartate-Induced Apoptosis in Cerebrocortical Neurons,” Journal of Neurochemistry, Vol. 71, No. 3, 1998, pp. 946-959. doi:10.1046/j.1471-4159.1998.71030946.x
[28] A. S. Waggoner. “The Use of Cyanine Dyes for the Determination of Membrane Potentials in Cells, Organelles, and Vesicles,” Methods in Enzymology, Vol. 55, 1979, pp 689-695. doi:10.1016/0076-6879(79)55077-0
[29] C. G. Fraga, P. I. Oteiza, M. S. Golup, M. E. Gershwin and C. L. Keen, “Effects of Aluminium on Brain Lipid Peroxidation,” Toxicology Letters, Vol. 51, No. 2, 1990, pp. 213-219. doi:10.1016/0378-4274(90)90212-5
[30] L. Xue, G. C. Fletcher and A. M. Tolkovsky, “Autophagy is Activated by Apoptotic Signaling in Sympathetic Neurons: An Alternative Mechanism of Death Execution,” Molecular and Cellular Neuroscience, Vol. 14, No. 3, 1999, pp. 180-198. doi:10.1006/mcne.1999.0780
[31] P. Codogno and A. J. Mejier, “Autophagy and Signalling: Their Role in Cell Survival and Cell Death,” Cell Death and Differentiation, Vol. 12 No. S2, 2005, pp. 1509-1518. doi:10.1038/sj.cdd.4401751
[32] F. Adhami, G. Liao, Y. M. Morozov, A. Schloemer, V. J. Schmithorst, J. N. Lorenz, R. S. Dunn, C. V. Vorhees, M. Wills-Karp, J. L. Degen, R. J. Davis, N. Mizushima, P. Rakic, B. J. Dardzinski, S. K. Holland, F. R. Sharp and C. Y. Kuan, “Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy,” American Journal of Pathology, Vol. 169, No. 2, 2006, pp. 566-583. doi:10.2353/ajpath.2006.051066
[33] W. Balduini, S. Carloni and G. Buonocore, “Autophagy in Hypoxia-Ischemia Induced Brain Injury: Evidence and Speculations,” Autophagy, Vol. 5, No. 2, 2009, pp. 221- 223. doi:10.4161/auto.5.2.7363
[34] S. Barnes, “Evolution of the Health Benefits of Soy Isoflavones,” Proceedings of the Society for Experimental Biology and Medicine, Vol. 217, No. 3, 1998, pp. 386-392.
[35] D. Altavilla, A. Crisafulli, H. Marini, M. Esposito, R. D. Anna, F. Corrado, A. Bitto and F. Squadrito, “Cardiovascular Effects of the Phytoestrogen Genistein,” Cardiovascular and Hematological Agents in Medicinal Chemistry, Vol 2, No. 2, 2004, pp. 179-186. doi:10.2174/1568016043477297
[36] H. J. Wu and W. H. Chan, “Genistein Protects Methylglioxal-Induced Oxidative DNA Damage and Cell Injury in Human Mononuclear Cells,” Toxicology in Vitro, Vol. 21, No. 3, 2007, pp. 335-342. doi:10.1016/j.tiv.2006.09.002
[37] M. S. Kindy, “Inhibition of Tyrosine Phosphorylation Prevents Delayed Neuronal Death Following Cerebral Ischemia,” Journal of Cerebral Blood Flow & Metabolism, Vol. 13, No.3, 1993, pp. 372-377.
[38] R. Traystman, J. R. Kirsch and C. Koehler, “Oxygen Radicals Mechanism of Brain Injuria Following Ischemia and Reperfusion,” Journal of Applied Physiology, Vol. 71, No. 4, 1991, pp. 1185-1195.
[39] Y. Matsuo, T. Kihara, M. Ikeda, M. Ninomiya, H. Onodera and K. Kogure, “Role of Platelet-Activating Factor and Thromboxane A2 in Radical Production during Ischemia and Reperfusion of the Rat Brain,” Brain Research, Vol. 709, No. 2, 1996, pp. 296-302. doi:10.1016/0006-8993(95)01324-5
[40] T. Kimova and N. S. Chandel, “Mitochondrial Complex Iii Regulates Hypoxic Activation of HIF,” Cell Death and Differentiation, Vol. 15, No. 4, 2008, pp. 660-666. doi:10.1038/sj.cdd.4402307
[41] P. H. Chan, “Role of Oxidants in Ischemic Brain Damage,” Stroke, Vol. 27, No. 6, 1996, pp. 1124-1129.
[42] H. Friberg, T. Wieloch and R. F. Castilho, “Mitochondrial Oxidative Stress after Global Brain Ischemia in Rats,” Neuroscience Letters, Vol. 334, No. 2, 2002, pp. 111-114. doi:10.1016/S0304-3940(02)01116-3
[43] M. A. Moro, A. Almeida, J. P. Bola?os and I. Lizasoain, “Mitochondrial Respiratory Chain and Free Radical Generation in Stroke,” Free Radical Biology & Medicine, Vol. 39, No. 10, 2005, pp. 1291-1304. doi:10.1016/j.freeradbiomed.2005.07.010
[44] D. L. Zhang, Y. T. Zhang, J. J. Yin and B. L. Zhao, “Oral Administration of Crataegus Flavonoids Protects against Ischemia/Reperfusion Brain Damage in Gerbils,” Journal of Neurochemistry, Vol. 90, No. 1, 2004, pp. 211-219. doi:10.1111/j.1471-4159.2004.02480.x
[45] V. E. Dosenko, V. S. Nagibin, L. V. Tumanovska and A. A. Moibenko, “Protective Effect of Autophagy in Anoxia-Reoxigenation of Isolated Cardiomyocyte?” Autophagy, Vol. 2, No. 4, 2006, pp. 305-306.
[46] M. Komatsu, S. Waguri, T. Chiba, S. Murata, J. Iwata, I. Tanida, T. Ueno, M. Koike, Y. Uchiyama, E. Komonani and K. Tanaka, “Loss of Autophagy in the Central Nervous System Causes Neurodegeneration in Mice,” Nature, Vol. 441, No. 7095, 2006, pp. 880-884. doi:10.1038/nature04723
[47] T. Hara, K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara, R. Suzuki-Migishima, M. Yokoyama, K. Mishima, I. Saito, H. Okano and N. Mizushima, “Supression of Basal Autophagy in Neuronal Cells Causes Neurodegenerative Disease in Mice,” Nature, Vol. 441, No. 7095, 2006, pp. 885-889. doi:10.1038/nature04724

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.