Share This Article:

Calibrating Vegetation Cover and Grassland Pollen Assemblages in the Flint Hills of Kansas, USA

Abstract Full-Text HTML Download Download as PDF (Size:3710KB) PP. 1-10
DOI: 10.4236/ajps.2013.47A1001    3,560 Downloads   5,157 Views   Citations


Grassland cover and composition respond to climate and have undoubtedly changed during the Holocene, but quantitative reconstructions from fossil pollen have been vague about spatial scale and taxon-specific cover. Here, we estimate the relevant source area of pollen for sedimentary basins approximately 50 m in radius, and we report pollen productivity estimates for 12 plant taxa in the tallgrass prairies of central North America. Both relevant source area of pollen and pollen productivity estimates were calculated via the Extended R-Value Model. To obtain these estimates, we collected and quantified the pollen found in surface sediment samples from 24 ponds across the study area. Vegetation was surveyed in the field in a 100 m radius around each pond, and vegetation maps from the Kansas Gap Analysis Project (GAP) were used to a radius of 2 km. Pollen fall speeds were calculated according to Stoke’s Law. Pollen assemblages from basins approximately 50 m in radius have a relevant source area of 1060 m in this grassland landscape. Pollen productivity estimates range from 0.02 to over 30 among the 12 taxa: Artemisia, Ambrosia, Asteraceae, Chenopodiaceae, Cornus, Fabaceae, Juniperus, Maclura, Poaceae, Populus, Quercus, and Salix. Woody taxa generally have higher pollen productivity than herbaceous taxa (except for Chenopodiaceae and Ambrosia).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Commerford, K. McLauchlan and S. Sugita, "Calibrating Vegetation Cover and Grassland Pollen Assemblages in the Flint Hills of Kansas, USA," American Journal of Plant Sciences, Vol. 4 No. 7A, 2013, pp. 1-10. doi: 10.4236/ajps.2013.47A1001.


[1] H. Seppa and K. D. Bennett, “Quaternary Pollen Analysis: Recent Progress in Palaeoecology and Palaeoclimatology,” Progress in Physical Geography, Vol. 27, No. 4, 2003, pp. 548-579. doi:10.1191/0309133303pp394oa
[2] S. Sugita, “Pollen Representation of Vegetation in Quaternary Sediments: Theory and Method in Patchy Vegetation,” Journal of Ecology, Vol. 82, No. 4, 1994, pp. 881-897. doi:10.2307/2261452
[3] A. Brostrom, et al., “Pollen Productivity Estimates of Key European Plant Taxa for Quantitative Reconstruction of Past Vegetation: A Review,” Vegetation History and Archaeobotany, Vol. 17, No. 5, 2008, pp. 461-478. doi:10.1007/s00334-008-0148-8
[4] S. Sugita, et al., “Testing the Landscape Reconstruction Algorithm for Spatially Explicit Reconstruction of Vegetation in Northern Michigan and Wisconsin,” Quaternary Research, Vol. 74, No. 2, 2010, pp. 289-300. doi:10.1016/j.yqres.2010.07.008
[5] V. Zernitskaya and N. Mikhailov, “Evidence of Early Farming in the Holocene Pollen Spectra of Belarus,” Quarternary International, Vol. 203, No. 1-2, 2009, pp. 91-104. doi:10.1016/j.quaint.2008.04.014
[6] J. Whitmore, et al., “Modern Pollen Data from North American and Greenland for Multi-Scale Paleoenvironmental Applications,” Quaternary Science Reviews, Vol. 24, No. 16-17, 2005, pp. 1828-1848. doi:10.1016/j.quascirev.2005.03.005
[7] Y. Li, et al., “A Transfer-Function Model Developed from an Extensive Surface-Pollen Data Set in Northern China and Its Potential for Paleoclimate Reconstructions,” The Holocene, Vol. 17, No. 7, 2007, pp. 897-905. doi:10.1177/0959683607082404
[8] S. T. Jackson and J. W. Williams, “Modern Analogs in Quaternary Paleoecology: Here Today, Gone Yesterday, Gone Tomorrow?” Annual Review of Earth and Planetary Sciences, Vol. 32, 2004, pp. 495-537. doi:10.1146/
[9] A. Michels, et al., “Multidecadal to Millennial-Scale Shifts in Drought Conditions on the Canadian Prairies over the Past Six Millennia: Implications for Future Drought Assessment,” Global Change Biology, Vol. 13, No. 7, 2007, pp. 1295-1307. doi:10.1111/j.1365-2486.2007.01367.x
[10] J. W. Williams, et al., “Rapid, Time-Transgressive, and Variable Responses to Early Holocene Midcontinental Drying in North America,” Geology, Vol. 38, No. 2, 2010, pp. 135-138. doi:10.1130/G30413.1
[11] E. A. C. Rushton, S. E. Metcalfe and B. S. Whitney, “A Late-Holocene Vegetation History from the Maya Lowlands, Lamanai, Northern Belize,” Holocene, Vol. 23, No. 4, 2013, pp. 485-493. doi:10.1177/0959683612465449
[12] S. Sugita, “Theory of Quantitative Reconstruction of Vegetation I: Pollen from Large Sites Reveals Regional Vegetation Composition,” Holocene, Vol. 17, No. 2, 2007, pp. 229-241. doi:10.1177/0959683607075837
[13] S. Sugita, “Theory of Quantitative Reconstruction of Vegetation II: All You Need Is Love,” Holocene, Vol. 17, No. 2, 2007, pp. 243-257. doi:10.1177/0959683607075838
[14] S. Sugita, T. Parshall and R. Calcote, “Detecting Differences in Vegetation among Paired Sites Using Pollen Records,” Holocene, Vol. 16, No, 8, 2006, pp. 1123-1135. doi:10.1177/0959683606069406
[15] A. Brostrom, S. Sugita and M. J. Gaillard, “Pollen Productivity Estimates for the Reconstruction of Past Vegetation Cover in the Cultural Landscape of Southern Sweden,” Holocene, Vol. 14, No. 3, 2004, pp. 368-381. doi:10.1191/0959683604hl713rp
[16] A. B. Nielsen and S. Sugita, “Estimating Relevant Source Area of Pollen for Small Danish Lakes around AD 1800,” Holocene, Vol. 15, No. 7, 2005, pp. 1006-1020. doi:10.1191/0959683605hl874ra
[17] W. Soepboer, et al., “Pollen Productivity Estimates for Quantitative Reconstruction of Vegetation Cover on the Swiss Plateau,” Holocene, Vol. 17, No. 1, 2007, pp. 65-77. doi:10.1177/0959683607073279
[18] S. Sugita, S. Hicks and H. Sormunen, “Absolute Pollen Productivity and Pollen-Vegetation Relationships in Northern Finland,” Journal of Quaternary Science, Vol. 25, No. 5, 2010, pp. 724-736. doi:10.1002/jqs.1349
[19] A. Poska, et al., “Relative Pollen Productivity Estimates of Major Anemophilous Taxa and Relevant Source Area of Pollen in a Cultural Landscape of the Hemi-Boreal Forest Zone (Estonia),” Review of Palaeobotany and Palynology, Vol. 167, No. 1-2, 2011, pp. 30-39. doi:10.1016/j.revpalbo.2011.07.001
[20] K. L. Hjelle and S. Sugita, “Estimating Pollen Productivity and Relevant Source Area of Pollen Using Lake Sediments in Norway: How Does Lake Size Variation Affect the Estimates?” Holocene, Vol. 22, No. 3, 2012, pp. 313-324. doi:10.1177/0959683611423690
[21] C. L. Twiddle, et al., “Pollen Productivity Estimates for a Pine Woodland in Eastern Scotland: The Influence of Sampling Design and Vegetation Patterning,” Review of Palaeobotany and Palynology, Vol. 174, 2012, pp. 67-78. doi:10.1016/j.revpalbo.2011.12.006
[22] M. J. Bunting, et al., “Estimates of ‘Relative Pollen Productivity’ and ‘Relevant Source Area of Pollen’ for Major Tree Taxa in Two Norfolk (UK) Woodlands,” Holocene, Vol. 15, No. 3, 2000, pp. 459-465. doi:10.1191/0959683605hl821rr
[23] F. B. Samson, F. L. Knopf and W. R. Ostlie, “Great Plains Ecosystems: Past, Present, and Future,” Wildlife Society Bulletin, Vol. 32, No. 1, 2004, pp. 6-15. doi:10.2193/0091-7648(2004)32[6:GPEPPA]2.0.CO;2
[24] J. M. Briggs, et al., “An Ecosystem in Transition. Causes and Consequences of the Conversion of Mesic Grassland to Shrubland,” Bioscience, Vol. 55, No. 3, 2005, pp. 243-254. doi:10.1641/0006-3568(2005)055[0243:AEITCA]2.0.CO;2
[25] K. Faegri, P. E. Kaland and K. Kzywinski, “Textbook of Pollen Analysis,” 4th Edition, John Wiley, Hoboken, 1989, p. 328.
[26] K. K. McLauchlan, J. L. Commerford and C. J. Morris, “Tallgrass Prairie Pollen Assemblages in Mid-Continental North America,” Vegetation History and Archaeobotany, Vol. 22, No. 3, 2013, pp. 171-183. doi:10.1007/s00334-012-0369-8
[27] P. H. Gregory, “The Microbiology of the Atmosphere,” Leonard Hill, Aylesbury, 1973.
[28] S. Sugita, M.-J. Gaillard and A. Brostrom, “Landscape Openness and Pollen Records: A Simulation Approach,” Holocene, Vol. 9, No. 4, 1999, pp. 409-421. doi:10.1191/095968399666429937
[29] G. Eisenhut, “Investigations on the Morphology and Ecology of Pollen Grains of Native and Introduced Forest Trees,” Paul Parey, Hamburg, 1961.
[30] M.-J. Gaillard, et al., “The Use of Modelling and Simulation Approach in Reconstructing Past Landscapes from Fossil Pollen Data: A Review and Results from the POLLANDCAL Network,” Vegetation History and Archaeobotany, Vol. 17, No. 5, 2008, pp. 419-443. doi:10.1007/s00334-008-0169-3
[31] M. J. Bunting, et al., “Vegetation Structure and Pollen Source Area,” Holocene, Vol. 14, No. 5, 2004, pp. 651-660. doi:10.1191/0959683604hl744rp
[32] R. C. Anderson, J. S. Fralish and J. M. Baskin, “Savannas, Barrens, and Rock Outcrop Plant Communities of North America,” Cambridge University Press, Cambridge, 1999.
[33] L. A. Real, “Pollination Biology,” Academic Press, Inc., Orlando, 1983.
[34] J. W. Williams and B. Shuman, “Obtaining Accurate and Precise Environmental Reconstructions from the Modern Analog Technique and North American Surface Pollen Dataset,” Quaternary Science Reviews, Vol. 27, No. 7-8, 2008, pp. 669-687. doi:10.1016/j.quascirev.2008.01.004
[35] H. von Stedingk, R. M. Fyfe and A. Allard, “Pollen Productivity Estimates from the Forest-Tundra Ecotone in West-Central Sweden: Implications for Vegetation Reconstruction at the Limits of the Boreal Forest,” Holocene, Vol. 18, No. 2, 2008, pp. 323-332. doi:10.1177/0959683607086769
[36] S. Hellman, et al., “The Reveals Model, a New Tool to Estimate Past Regional Plant Abundance from Pollen Data in Large Lakes: Validation in Southern Sweden,” Journal of Quaternary Science, Vol. 23, No. 1, 2008, pp. 21-42. doi:10.1002/jqs.1126
[37] J. W. Williams, B. Shuman and P. J. Bartlein, “Rapid Responses of the Prairie-Forest Ecotone to Early Holocene Aridity in Mid-Continental North America,” Global and Planetary Change, Vol. 66, No. 3/4, 2009, pp. 195-207. doi:10.1016/j.gloplacha.2008.10.012

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.