Ammonium Dissociation for Swine and Dairy Cattle Manures

Abstract

The dissociation of ammonium (NH4+) into ammonia (NH3) in wastewaters is a key factor governing atmospheric nitrogen volatilization. Relatively rich in total ammoniacal nitrogen (TAN or NH4+ plus NH3), livestock manures are most susceptible to NH3 volatilization, although indirect measurements report 5 times less NH4+ dissociation as compared to theoretical values. The objective of this study was therefore to directly measure NH4+ dissociation of two standard NH4Cl solutions (1750 and 3500 mg TAN/L), and of swine and dairy cattle manures at various dilutions and temperatures using a ammonia selective electrode (hydrogen and silver-silver chloride electrode couple) at various pH and temperatures. All solutions demonstrated NH4+ dissociation varying from theory, especially because of dissolved compounds such as atmospheric CO2. At a neutral pH, ratios of theoretical to measured [NH3-N] ranged from 1.5 to 3.5, with higher ratios corresponding to higher TAN levels. At a pH below 6, NH3 volatilization was enhanced by the shift of HCO3- to H2CO3 and CO2. With previous research projects reporting 5 times less NH3 volatilization as compared to theory, the present indicates that dissociation activity account for half of this drop with gas diffusion accounting for the other half.

Share and Cite:

M. Liu, D. Giard and S. Barrington, "Ammonium Dissociation for Swine and Dairy Cattle Manures," Journal of Environmental Protection, Vol. 4 No. 5A, 2013, pp. 6-15. doi: 10.4236/jep.2013.45A002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. C. Doney, N. Mahowald, I. Lima, R. A. Feely, F. T. Maclenzie, J.-F. Lamarque and P. J. Rasch, “Impact of Anthropogenic Atmospheric Nitrogen and Sulphur Deposition on Ocean Acidification and the Inorganic Carbon System,” Proceedings of the National Academy of Sciences, Vol. 104, No. 37, 2007, pp. 14580-14585. doi:10.1073/pnas.0702218104
[2] USDA, “National Program on Air Quality: Component II: Ammonia and Ammonium Emissions”. www.ars.usda.gov/research/programs/programs.htm?np_code=203&docid=320&page=2
[3] S. G. Sommer and N. J. Hutchings, “Ammonia Emission from Field Applied Manure and Its Reduction—Invited Paper,” European Journal of Agronomy, Vol. 15, No. 1, 2001, pp. 1-15. doi:10.1016/S1161-0301(01)00112-5
[4] P. Sørensen and J. Eriksen, “Effect of Slurry Acidification with Sulfuric Acid Combined with Aeration on the Turnover and Plant Availability of Nitrogen,” Agriculture, Ecosystems and Environment, Vol. 131, No. 3-4, 2009, pp. 240-246. doi:10.1016/j.agee.2009.01.024
[5] A. H. W. Beusen, A. F. Bouwman, P. S. C. Heuberger, G. van Drecht and G. K. W. van Der Hoek, “Bottom up Uncertainty Estimate of Global Ammonia Emissions from Global Agricultural Systems,” Atmospheric Environment, Vol. 42, No. 24, 2008, pp. 6067-6077. doi:10.1016/j.atmosenv.2008.03.044
[6] M. Sutton, S. Reis and S. Baker, “Atmospheric Ammonia,” Springer Publishers, Cambridge, 2009. doi:10.1007/978-1-4020-9121-6
[7] J. Seedorf and J. Hartung, “Survey of Ammonia Concentrations in Livestock Buildings,” The Journal of Agricultural Science, Vol. 133, No. 4, 2009, pp. 433-437. doi:10.1017/S0021859699007170
[8] B. Ulrich, “Interaction of Forest Canopies with Atmospheric Constituents: SO2, Alkali and Earth Alkali Cations and Chloride,” In: B. Ulrich and J. Pankrath, Eds., Effect of Accumulation of air Pollutants in Forest Ecosystems, D. Reidel Publishers, Dordrecht, 1991, pp. 330-345.
[9] H. Ellenberg, “Floristic Changes Due to Nitrogen Deposition in Central Europe,” Nord Miljorapport, Vol. 15, 1988, pp. 375-383.
[10] B. Aaby, “Monitoring Danish Raised Bogs,” In: A. Grunig, Ed., Mires and Man. Mire Conservation in a Densely Populated Country—The Swiss Experience, Komos Publishers, Birmensdorf Switzerland, 1994, pp. 284-300.
[11] S. C. Doney, N. Mahowald, I. Lima, R. A. Feely, F. T. Maclenzie, J.-F. Lamarque and P. J. Rasch, “Impact of Anthropogenic Atmospheric Nitrogen and Sulfur Deposition on Ocean Acidification and the Inorganic Carbon System,” Proceedings of the National Academy of Sciences, Vol. 104 No. 37, 2007, pp. 14580-14585. doi:10.1073/pnas.0702218104
[12] M. A. Sutton, C. E. R. Pitcain and D. Fowler, “The Exchange of Ammonia between the Atmosphere and Plant Communities,” Advances in Ecological Research, Vol. 24, 1993, pp. 301-393. doi:10.1016/S0065-2504(08)60045-8
[13] E. Brouwer, R. Bobbink, F. Meeuwsen and J. G. M. Roelofs, “Recovery from Acidification in Aquatic Mesocosms after Reducing Ammonium and Sulphate Deposition,” Aquatic Botany, Vol. 56, No. 2, 1997, pp. 119-130.
[14] S. Fleischer,”CO2 Deficit in Temperature Forest Soils Receiving High Atmospheric N-Deposition,” Royal Swedish Academy of Sciences, Vol. 32, No. 1, 2003, pp. 2-5.
[15] L. J. M. Van der Eerden, P. H. B. de Visser and C. J. Van Dijk, “Risk of Damage to Crops in the Direct Neighbourhood of Ammonia Sources,” Environmental Pollution, Vol. 102, No. 1, 1998, pp. 49-53. doi:10.1016/S0269-7491(98)80014-6
[16] A. G. Hashimoto and D. C. Ludington, “Ammonia Desorption from Concentrated Chicken Manrue Slurries,” Livestock Waste Management and Pollution Abatement: The Proceedings of the International Symposium on Livestock Wastes, Paper PROC-271. ASABE, St. Joseph, 1971, pp. 117-121.
[17] H. Chaoui, F. Montes, C. A. Rotz and T. L. Richard, “Dissociation and Mass Transfer Coefficients from Ammonia Volatilization Models,” Annual International Meeting. Paper 083802. ASABE, St. Joseph, 2008, pp. 117-121.
[18] R. H. Zhang, P. Yang, Z. Pan, T. D. Wolf and J. H. Turnbull, “Treatment of Swine Wastewater with Biological Conversion, Filtration, and Reverse Osmosis: A Laboratory Study,” Transactions of the ASAE, Vol. 47, No. 1, 2004, pp. 243-250.
[19] L. Masse, D. Masséand Y. Pellerin, “The Effect of pH on the Separation of Manure Nutrients with Reverse Osmosis Membranes,” Journal of Membrane Science, Vol. 325, No. 2, 2008, pp. 914-919. doi:10.1016/j.memsci.2008.09.017
[20] R. Loerh, “Pollution Control for Agriculture,” 2nd Edition, Academic Press Inc. (Harcourt Brace Jovanovich Publishers), Orlando, 1984, pp. 166-168.
[21] S. D. Hafner and J. J. Bisogni, “Modeling of Ammonia Speciation in Anaerobic Digesters,” Water Research, Vol. 43, No. 17, 2009, pp. 4105-4114. doi:10.1016/j.watres.2009.05.044
[22] R. G. Bates and G. D. Pinching, “Acid Dissociation Constant of Ammonium Ion at 0 to 5°C and the Base Strength of Ammonia,” Journal of Research National, Bureau Standard, Vol. 42, 1949, p. 419. doi:10.6028/jres.042.037
[23] R. G. Bates and G. D. Pinching, “Dissociation Constant of Aqueous Ammonia at 0 to 5°C from E. m. f. Studies of the Ammonium Salt in a Weak Acid,” Journal of American Chemical Society, Vol. 72, No. 3, 1950, pp. 1393-1396. doi:10.1021/ja01159a087
[24] APHA, “Standard Methods for the Analysis of Water and Wastewater,” American Public Health Association, Washington DC, 2005.
[25] G. R. Jayaweera and D. A. Mikkelsen, “Ammonia Volatilization from Flood Soil Systems: A Computer Model,” Soil Science Society of America Journal, Vol. 54, No. 5, 1990, pp. 1447-1455. doi:10.2136/sssaj1990.03615995005400050039x
[26] G. Olofsson, “Thermodynamic Quantities for the dissociation of Ammonium Ion and for the Ionization of Aqueous Ammonia over a Wide Temperature Range,” Journal of Chemical Thermodynamics, Vol. 7, No. 6, 1975, pp. 507-514. doi:10.1016/0021-9614(75)90183-4
[27] R. H. Piedrahita and A. Seland, “Calculation of pH in Fresh and Seawater Aquaculture Systems,” Aquaculture Engineering, Vol. 14, No. 4, 1995, pp. 331-346. doi:10.1016/0144-8609(94)00012-P
[28] D. Georgacaris, D. M. Sievers and E. L. Iannotti, “Buffer Stability in Manure Digesters,” Agricultural Wastes, Vol. 4, No. 6, 1982, pp. 427-441. doi:10.1016/0141-4607(82)90038-5
[29] M. L. Davis and S. J. Masten, “Principles of Environmental Engineering and Science,” McGraw Hill Publishers, New York, 2004, p. 69.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.