Share This Article:

The effect of photo-irradiation on the growth and ingredient composition of young green barley (Hordeum vulgare)

Abstract Full-Text HTML XML Download Download as PDF (Size:1053KB) PP. 185-194
DOI: 10.4236/as.2013.44027    3,011 Downloads   5,302 Views   Citations

ABSTRACT

We clarified that photo-irradiation of young green barley from three different light sources, natural light, 100% red light-emitting diodes (R-LEDs), and a mixture of 90% red-LEDs + 10% blue-LEDs (RB-LEDs), had significantly different results in growth degree (weight and height) and in components of young green barley. Barley that has sprouted for 15 days after germination did not show any apparent difference in height in response to irradiation by the three tested light sources, but by the 20th day of sprouting the height showed a positive effect by R-LEDs irradiation. By 15 days of sprouting the barley had achieved the heaviest weight by natural light irradiation, while the barley irradiated by R-LEDs had made remarkable progress at 20 days of sprouting. On the other hand, the irradiation by RB-LEDs showed a suppressive tendency after 15 days or more. The amino acid content, as indicated by dry weight conversion, was greatest in the barley irradiated by RB-LEDs, followed by R-LEDs, and natural light, which showed that LEDs irradiation is effective. In addition, four cyanogenic glucosides were isolated, identified, and quantified, as they are components frequently assessed in barley research. With regard to vitamin E, R-LEDs irradiation increased γ-tocopherol. Our results indicate that irradiation by LEDs would be effective for the enhancement of the functionality of young green barley.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Koga, R. , Meng, T. , Nakamura, E. , Miura, C. , Irino, N. , Devkota, H. , Yahara, S. and Kondo, R. (2013) The effect of photo-irradiation on the growth and ingredient composition of young green barley (Hordeum vulgare). Agricultural Sciences, 4, 185-194. doi: 10.4236/as.2013.44027.

References

[1] Benedet, J.A., Umeda, H. and Shibamoto, T. (2007) Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples. Journal of Agricultural and Food Chemistry, 55, 5499-5504. doi:10.1021/jf070543t
[2] Kamiyama, M. and Shibamoto, T. (2012) Flavonoids with potent antioxidant activity found in young green barley leaves. Journal of Agricultural and Food Chemistry, 60, 6260-6267. doi:10.1021/jf301700j
[3] Okawa, M., Kinjo, J., Hagiwara, Y., Hagiwara, H., Ueyama, H., Nakamura, K., Ishikawa, R., Ono, M. and Nohara, T. (1998) Three new anti-oxidative saponarin analogs from young green barley leaves. Chemical & Pharmaceutical Bulletin, 46, 1887-1890. doi:10.1248/cpb.46.1887
[4] Ueyama, H., Aotsuka, Y., Okawa, M., Ogura, Y., Ukeguchi, M., Hoashi, K. and Kinjo, J. (2011) Antioxidant activities of lutonarin isolated from young barley leaves. Nippon Shokuhin Kagaku Kogaku Kaishi, 58, 170-172. doi:10.3136/nskkk.58.170
[5] Alam, S., Kamel, S. and Kawai, S. (2001) Amelioration of manganese toxicity in barley with iron. Journal of Plant Nutrition, 24, 1421-1433. doi:10.1081/PLN-100106992
[6] Kocheva, K.V. and Georgiev, G.I. (2008) Changes in foliar proline concentration of osmotically stressed barley. Zeitschrift fur Naturforschung C. Journal of Biosciences, 63, 101-104.
[7] Yang, C.W., Xu, H.H., Wang, L.L., Liu, J., Shi, D.C. and Wang, D.L. (2009) Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 47, 79-86. doi:10.1007/s11099-009-0013-8
[8] Paulícová, I., Ehrenbergerová, J., Fiedlerová, V., Gabrovská, D., Havlová, P., Holasová, M., Kopácek, J., Ouhrabková, J., Pinkrová, J., Rysová, J., Vaculová, K. and Winterová, R. (2006) Evaluation of barley grass as a potential source of some nutritional substances. Czech Journal of Food Sciences, 25, 65-72.
[9] Zadoks, J.C., Chang, T.T. and Konzak, C.F. (1974) A decimal code for the growth stages of cereals. Weed Research, 14, 415-421. doi:10.1111/j.1365-3180.1974.tb01084.x
[10] Lee, N.Y., Lee, M.J., Kim, Y.K., Park, J.C., Park, H.K., Choi, J.S., Hyun, J.N., Kim, K.J., Park, K.H, Ko, J.K. and Kim, J.G. (2010) Effect of light emitting diode radiation on antioxidant activity of barley leaf. Journal of the Korean Society for Applied Biological Chemistry, 53, 685- 690. doi:10.3839/jksabc.2010.104
[11] Urbonaviciūté, A., Samuoliené, G., Brazaityté, A., Ulinskaité, R., Jankauskiené, J., Duchovskis, P. and Zukauskas, A. (2008) The possibility to control the metabolism of green vegetables and sprouts using light emitting diode illumination. Sodininkysté ir Darzininkysté, 27, 83-92.
[12] UrbonaviCiūté, A., Samuoliené, G., Brazaityté, A., Ruzgas, V., Sabajeviené, G., Sliogeryté, K., Sakalauskaité, J., Duchovskis, P. and Zukauskas, A. (2009) The effect of light quality on the antioxidative properties of green barely leaves. Scientific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Sodininkyste Ir Darzininkyste, 28, 153-161.
[13] Forslund, K. and Jonsson, L. (1997) Cyanogenic glycosides and their metabolic enzymes in barley, in relation to nitrogen levels. Physiologia Plantarum, 101, 367-372. doi:10.1111/j.1399-3054.1997.tb01010.x
[14] Nielsen, A.K., Olsen, E.C., Pontoppidan, K. and Moller, L.B. (2002) Leucine-derived cyano glucosides in barley. Plant Physiology, 129, 1066-1075. doi:10.1104/pp.001263
[15] Møller, B.L. (2010) Functional diversifications of cyanogenic glucosides. Current Opinion in Plant Biology, 13, 338-347. doi:10.1016/j.pbi.2010.01.009
[16] Koch, B.M., Sibbesen, O., Halkier, B.A., Svendsen, I. and Møller, B.L. (1995) The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Archives of Biochemistry and Biophysics, 323, 177-186. doi:10.1006/abbi.1995.0024
[17] Jones, P.R., Møller, B.L. and Høj, P.B. (1999) The UDP- glucose: p-Hydroxymandelonitrile-O-Glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. The Journal of Biological Chemistry, 274, 35483-35491. doi:10.1074/jbc.274.50.35483
[18] Samuoliene, G., Sirtautas, R., Brazaityte, A. and Duchovskis, P. (2012) LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chemistry, 134, 1494-1499. doi:10.1016/j.foodchem.2012.03.061
[19] Pourmohseni, H., Ibenthal, W.D., Machinek, R., Remberg, G. and Wray, V. (1993) Cyanoglucosides in the epidermis of Hordeum vulgare. Phytochemistry, 33, 295-297. doi:10.1016/0031-9422(93)85506-M
[20] Moon, H.K., Park, S.Y., Kim, Y.W. and Kim, C.S. (2006) Growth of Tsuru-rindo (Tripterospermum japonicum) cultured in vitro under various sources of light-emitting diode (LED) irradiation. Journal of Plant Biology, 49, 174- 179. doi:10.1007/BF03031014
[21] Goins, D.G., Yorio, C.N., Sanwo, M.M. and Brown, S.C. (1997) Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany, 48, 1407-1413. doi:10.1093/jxb/48.7.1407
[22] Davis, M.H. and Simmons, S.R. (1994) Far-red light reflected from neighbouring vegetation promotes shoot elongation and accelerates flowering in spring barley plants. Plants, Cell & Environment, 17, 829-836. doi:10.1111/j.1365-3040.1994.tb00177.x
[23] Skinner, R.H. and Simmons, S.R. (1993) Modulation of leaf elongation, tiller appearance and tiller senescence in spring barley by far-red light. Plant, Cell & Environment, 16, 555-562. doi:10.1111/j.1365-3040.1993.tb00903.x
[24] Ganjewala, D., Kumar, S., Devi, S.A. and Ambika, K. (2010) Advances in cyanogenic glycosides biosynthesis and analyses in plants: A review. Acta Biologica Szegediensis, 54, 1-14.
[25] Pourmohseni, H. and Ibenthal, W.D. (1991) Novel β-cyanoglucosides in the epidermal tissue of barley and their possible role in the barley-powdery mildew interaction. Angewandte Botanik, 65, 341-350.
[26] Blumenthal, S.G., Hendrickson, H.R., Abrol, Y.P. and Conn, E.E. (1968) Cyanide metabolism in higher plants: III. The biosynthesis of β-cyanoalanine. The Journal of Biological Chemistry, 243, 5302-5307.
[27] Li, Q. and Kubota, C. (2009) Effect of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67, 59-64. doi:10.1016/j.envexpbot.2009.06.011
[28] Abbasi, A.R., Hajirezaei, M., Hofius, D., Sonnewald, U. and Voll, M.L. (2007) Specific roles of α-and γ-Tocopherol in abiotic stressresponses of transgenic tobacco. Plant Physiology, 143, 1720-1738. doi:10.1104/pp.106.094771
[29] Yabuta, Y. and Shigeoka, S. (2005) Shokubutsu no vitamin E seigouseikeiro no zenyou. The Vitamin Society of Japan, 79, 395-398.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.