Share This Article:

Single Crystal X-Ray Diffraction Studies on Magnetic Yb5Co4Ge10

Abstract Full-Text HTML XML Download Download as PDF (Size:472KB) PP. 54-59
DOI: 10.4236/ampc.2013.31A008    4,624 Downloads   7,126 Views   Citations

ABSTRACT

The high quality single crystals of Yb5Co4Ge10 have been grown by the indium metal flux method and characterized by means of single crystal X-ray diffraction data. Yb5Co4Ge10 crystallizes in the Sc5Co4Si10 structure type, tetragonal space group P4/mbm and lattice constants are a = b = 12.6369(18) ? and c = 4.1378(8) ?. Crystal structure of Yb5Co4Ge10 composed of three-dimensional [Co4Ge12] network having five, six and eight membered rings. The three non-equivalent Yb atoms are sandwiched in three different channels created by the [Co4Ge12] network. Based on the bond length analysis from the crystallographic information, we confirmed that Yb1 and Yb2 atoms are in the trivalent magnetic state and Yb3 is in the divalent non-magnetic state.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

U. Subbarao and S. Peter, "Single Crystal X-Ray Diffraction Studies on Magnetic Yb5Co4Ge10," Advances in Materials Physics and Chemistry, Vol. 3 No. 1A, 2013, pp. 54-59. doi: 10.4236/ampc.2013.31A008.

References

[1] H. F. Braun, K. Yvon and R. M. Braun, “Sc5T4Si10 (T = Co, Rh, Ir) and Y5T4Ge10 (T = Os, Ir) with a New Tetragonal Structure Type,” Acta Crystallographica Section B, Vol. 36, No. 10, 1980, pp. 2397-2399. doi:10.1107/S0567740880008825
[2] S. C. Peter, S. Rayaprol, M. C. Francisco and M. G. Kanatzidis, “Crystal Structure and Properties of Yb5Ni4Ge10,” European Journal of inorganic Chemistry, Vol. 2011, No. 26, 2011, pp. 3963-3968. doi:10.1002/ejic.201100350
[3] K. Ghosh, S. Ramakrishnan, A. D. Chinchure, K. Jonason, V. R. Marathe, G. Chandra and S. Shah, “Heat-Capacity Studies in the Y5-xDyxOs4Ge10 System,” Physical Review B, Vol. 51, No. 17, 1995, pp. 11656-11663. doi:10.1103/PhysRevB.51.11656
[4] K. Ghosh, S. Ramakrishnan and G. Chandra, “Magnetism in the R5Ir4Si10 (R = Ho and Er) Systems,” Physical Review B, Vol. 48, No. 6, 1993, pp. 4152-4155. doi:10.1103/PhysRevB.48.4152
[5] G. Venturini, M. Méot Meyer, E. McRae, J. F. Maréché and B. Roques, “Vingt Nouveaux Germaniures Ternaires TR5T4Ge10 de Metaux tr des Terres Rares et T = Co, Rh, Ir. Supraconductivite de Lu5Rh4Ge10 et Lu5Ir4Ge10,” Materials Research Bulletin, Vol. 59, No. 12, 1984, pp. 1647- 1652. doi:10.1016/0025-5408(84)90242-3
[6] H. F. Braun, G. Burri and L. Rinderer, “Partial Phase Diagram of the System Sc-Rh-Si,” Journal of the Less Common Metals, Vol. 68, No. 1, 1979, pp. 1-8. doi:10.1016/0022-5088(79)90281-9
[7] O. I. Bodak, O. L. Sologub, P. Y. Zavalii and V. E. Zavodnik, “Crystal Structure of the Compound Ho5Os4Ge10,” Russian Metallurgy (Metally), Vol. 6, 1991, pp. 156-158.
[8] O. I. Bodak and O. L. Sologub, “The Ho-Os-Ge System,” Russian Journal of Inorganic Chemistry, Vol. 36, 1991, pp. 1353-1355.
[9] O. L. Sologub, K. Hiebl, P. Rogl and H. No?l, “Magnetic Behavior of Holmium-Platinum Group Metal-Germanium Ternary Alloys,” Journal of Alloys and Compounds, Vol. 245, No. 1-2, 1996, pp. L13-L17. doi:10.1016/S0925-8388(96)02409-7
[10] L. S. Hausermannberg and R. N. Shelton, “Low Temperature Heat Capacity Study of Superconducting Ternary Silicides with the Sc5Co4Si10-Type Structure,” Physica B+C, Vol. 135, No. 1-3, 1985, pp. 400-404. doi:10.1016/0378-4363(85)90516-9
[11] N. G. Patil and S. Ramakrishnan, “Magnetism in the R5T4Sn10 (R = Ce, Pr, and Nd; T = Rh and Ir) System,” Physical Review B, Vol. 56, No. 6, 1997, pp. 3360-3371. doi:10.1103/PhysRevB.56.3360
[12] H. D. Yang, R. N. Shelton and H. F. Braun, “Superconductivity and Electronic Instability at High Pressure in Sc5Co4Si10-Type Compounds,” Physical Review B, Vol. 33, No. 7, 1986, pp. 5062-5065. doi:10.1103/PhysRevB.33.5062
[13] H. D. Yang, P. Klavins and R. N. Shelton, “Low-Temperature Physical Properties of R5Ir4Si10 (R = Dy, Ho, Er, Tm, and Yb) Compounds,” Physical Review B, Vol. 43, No. 10, 1991, pp. 7688-7694. doi:10.1103/PhysRevB.43.7688
[14] S. Ramakrishnan, K. Ghosh and G. Chandra, “Magnetism and Superconductivity in Sc5-xDyxIr4Si10 Alloys,” Physical Review B, Vol. 46, No. 5, 1992, pp. 2958-2963. doi:10.1103/PhysRevB.46.2958
[15] G. Venturini, B. Malamana and B. Roques, “New Rare Earth—Transition Metal Stannides with Sc5Co4Si10 and TiMnSi2—Type Structures. Atomic Size Effects on Their Stability,” Materials Research Bulletin, Vol. 24, No. 9, 1989, pp. 1135-1139. doi:10.1016/0025-5408(89)90071-8
[16] R. E. Gladyshevskii, E. Parthé, O. L. Sologub and P. S. Salamakha, “Crystal Structure of Pentaholmium Tetrarhodium Decagermanium, Ho5Rh4Ge10 with Sc5Co4Si10 Type,” Zeitschrift für Kristallographie, Vol. 203, No. 1, 1993, pp. 115-116. doi:10.1524/zkri.1993.203.Part-1.115
[17] L. S. Hausermannberg and R. N. Shelton, “Low-Temperature Heat-Capacity Study of Superconducting Ternary Silicides and Germanides with the Sc5Co4Si10-Type Structure,” Physical Review B: Condensed Matter, Vol. 35, No. 13, 1987, pp. 6659-6664. doi:10.1103/PhysRevB.35.6659
[18] H. F. Braun and C. U. Segre, “The Superconductivity of Sc5T4Si10 (T = Co, Rh, Ir) and Isomorphous Compounds,” Solid State Communications, Vol. 35, No. 10, 1980, pp. 735-738. doi:10.1016/0038-1098(80)91065-0
[19] N. G. Patil and S. Ramakrishnan, “Magnetism and Superconductivity in M5Rh4Ge10 (M = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y),” Physical Review B, Vol. 59, No. 14, 1999, pp. 9581-9589. doi:10.1103/PhysRevB.59.9581
[20] M. Kolenda, M. Hofmann, J. Leciejewicz, B. Penc and A. Szytula, “Neutron-Diffraction Studies of R5Rh4Ge10 (R?=?Tb, Ho, Er) Compounds,” Applied Physics A, Vol. 74, No. 1, 2002, pp. S769-S771. doi:10.1007/s003390201582
[21] S. Ramakrishnan, K. Ghosh and G. Candra, “Antiferromagnetism in the Dy5Ir4Si10 System,” Physical Review B, Vol. 45, No. 18, 1992, pp. 10769-10770. doi:10.1103/PhysRevB.45.10769
[22] K. Katoh, T. Tsutsumi, K. Yamada, G. Terui, Y. Niide and A. Ochiai, “Magnetic and Transport Properties of Yb5T4Ge10 (T = Co, Rh, Ir),” Physica B: Condensed Matter, Vol. 373, No. 1, 2006, pp. 111-119. doi:10.1016/j.physb.2005.11.098
[23] P. Villars and K. Cenzual, “Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds,” ASM International, Materials Park, 2010.
[24] Inorganic Crystal Structure Database, “Fachinformationszentrum Karlsruhe GmbH: Eggenstein-Leopoldshafen,” Karlsruhe, 2012.
[25] B. Kindler, D. Finsterbusch, R. Graf and F. Ritter, “Mixed- Valence Transition in YbInCu4,” Physical Review B, Vol. 50, No. 2, 1994, pp. 704-707. doi:10.1103/PhysRevB.50.704
[26] E. Bauer, “Anomalous Properties of Ce-Cu- and Yb-Cu- Based Compounds,” Advances in Physics, Vol. 40, No. 4, 1991, pp. 417-534. doi:10.1080/00018739100101512
[27] P. Wachter, “Handbook on the Physics and Chemistry of Rare Earths,” Elsevier Science, Amsterdam, 1994, p. 177.
[28] Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy and P. Coleman, “Quantum Criticality without Tuning in the Mixed Valence Compound Β-YbAlB4,” Science, Vol. 331, No. 6015, 2011, pp. 316-319. doi:10.1126/science.1197531
[29] U. Subbarao and S. C. Peter, “Crystal Structure of YbCu6In6 and Mixed Valence Behavior of Yb in YbCu6–XIn6+X (X = 0, 1, and 2) Solid Solution,” Inorganic Chemistry, Vol. 51, No. 11, 2012, pp. 6326-6332. doi:10.1021/ic300552w
[30] S. Ernst, S. Kirchner, C. Krellner, C. Geibel, G. Zwicknagl, F. Steglich and S. Wirth, “Emerging Local Kondo Screening and Spatial Coherence in the Heavy-Fermion Metal YbRh2Si2,” Nature, Vol. 474, 2011, pp. 362-366. doi:10.1038/nature10148
[31] U. Subbarao and S. C. Peter, “Crystal Growth and Properties of YbCuGa3: First Monoclinic System in the RETX3 Family,” Crystal Growth & Design, Vol. 13, No. 2, 2013, pp. 953-959. doi:10.1021/cg301765f
[32] U. Subbarao, M. Gutmann and S. C. Peter, “New Structure Type in the Mixed-Valent Compound YbCu4Ga8,” Inorganic Chemistry, Vol. 52, No. 4, 2013, pp. 2219- 2227. doi:10.1021/ic302688n
[33] S. C. Peter, S. M. Disseler, J. N. Svensson, P. Carretta and M. J. Graf, “Yb4LiGe4—A Yb Mixed Valent Zintl Phase with Strong Electronic Correlations,” Journal of Alloys and Compounds, Vol. 516, No. 516, 2012, pp. 126- 133. Doi: 10.1016/J.Jallcom.2011.11.148
[34] S. C. Peter and M. G. Kanatzidis, “The New Binary Intermetallic YbGe2.83,” Journal of Solid State Chemistry, Vol. 183, No. 9, 2010, pp. 2077-2081. doi: 10.1016/J.Jssc.2010.06.022
[35] S. C. Peter, J. Salavador, J. B. Martin, W. Wong-Ng and M. G. Kanatzidis, “New Intermetallics YbAu2In4 and Yb2Au3In5,” Inorganic Chemistry, Vol. 49, No. 22, 2010, pp. 10468-10474. doi:10.1021/ic101502e
[36] M. Chondroudi, S. C. Peter, C. D. Malliakas, M. Balasubramanian, Q. Li and M. G. Kanatzidis, “Yb3AuGe2In3: An Ordered Variant of the YbAuIn Structure Exhibiting Mixed-Valent Yb Behavior,” Inorganic Chemistry, Vol. 50, No. 4, 2011, pp. 1184-1193. doi:10.1002/ejic.201100350
[37] S. C. Peter, S. Rayaprol, M. C. Francisco and M. G. Kanatzidis, “Crystal Structure and Properties of Yb5Ni4Ge10,” European Journal of Inorganic Chemistry, Vol. 2011, No. 26, 2011, pp. 3963-3968. doi:10.1021/ja204971n
[38] S. C. Peter, M. Chondroudi, C. D. Malliakas, M. Balasubramanian and M. G. Kanatzidis, “Anomalous Thermal Expansion in the Square-Net Compounds RE4TGe8 (RE = Yb, Gd; T = Cr-Ni, Ag),” Journal of the American Chemical Society, Vol. 133, No. 35, 2011, pp. 13840-13843. doi:10.1021/ja204971n
[39] S. C. Peter, S. Sarkar and M. G. Kanatzidis, “Metallic Yb2AuGe3: An Ordered Superstructure in the AlB2-Type Family with Mixed-Valent Yb and a High-Temperature Phase Transition,” Inorganic Chemistry, Vol. 51, No. 20, 2012, pp. 10793-10799. doi:10.1021/ic301197w
[40] SAINT, “Bruker AXS,” 6.02 ed., SAINT, Madison, 1999.
[41] G. M. Sheldrick, SADABS, “Empirical Absorption Correction Program,” University of G?ttingen, G?ttingen, 1997.
[42] L. J. Farrugia, “WinGX Suite for Small-Molecule Single- Crystal Crystallography,” Journal of Applied Crystallography, Vol. 32, No. 4, 1999, pp. 837-838. doi:10.1107/S0021889899006020
[43] G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica Section A, Vol. A64, No. 1, 2008, pp. 112-122. doi:10.1107/S0021889899006020
[44] SHELXTL 5.10, “Bruker Analytical X-Ray Systems,” Madison, 1997.
[45] Crystal Impact, “Crystal Impact GbR,” Version 3.g, Crystal Impact, Bonn, 2011.
[46] R. T. Sanderson, “Electronegativity and Bond Energy,” Journal of the American Chemical Society, Vol. 105, No. 8, 1983, pp. 2259-2261. doi:10.1021/ja00346a026
[47] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, “Table of Bond Lengths Determined by X-Ray and Neutron Diffraction,” Journal of the American Chemical Society, Perkin Transactions 2, Vol. 12, 1987, pp. S1-S19. doi:10.1039/p298700000s1

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.