Share This Article:

Biological Synthesis of Colloidal Gold Nanoprisms Using Penicillium citrinum MTCC9999

Full-Text HTML XML Download Download as PDF (Size:714KB) PP. 20-27
DOI: 10.4236/jbnb.2013.42A003    5,396 Downloads   7,997 Views   Citations

ABSTRACT

This report provides for the first time rapid novel environment friendly cell surface based synthesis of stable gold nanoprisms at room temperature using Penicillium citrinum MTCC9999 biomass. The UV-Visible spectral scan of dispersed gold nanoparticles (GNPs) solution showed absorption maxima at 540 nm due to surface plasma resonance (SPR) of gold nanoparticles. Typical Transmission Electron Microscopic (TEM) images showed that most of them were prism (55%) shaped with a diameter ranging from 20 - 40 nm. These results obtained from TEM correlated well with the data obtained from Dynamic Light Scattering (DLS) experiment. Average zeta potential of GNPs was -20 mV suggesting some biomolecules capped the nanoparticles imparting a net negative charge over it. FTIR analysis also showed that protein molecules were involved in stabilization.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Goswami and S. Ghosh, "Biological Synthesis of Colloidal Gold Nanoprisms Using Penicillium citrinum MTCC9999," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2A, 2013, pp. 20-27. doi: 10.4236/jbnb.2013.42A003.

References

[1] C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff, “A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials,” Nature, Vol. 382, No. 15, 1996, pp. 607-609. doi:10.1038/382607a0
[2] M. Han, X. Gao, J. Z. Su and S. Nie, “Quantum-DotTagged Microbeads for Multiplexed Optical Coding of Biomolecules,” Nature Biotechnology, Vol. 19, No. 7, 2001, pp. 631-635. doi:10.1038/90228
[3] A. K. Salem, P. C. Searson and K. W. Leong, “Multifunctional Nanorods for Gene Delivery,” Nature Materials, Vol. 2, No. 10, 2003, pp. 668-671. doi:10.1038/nmat974
[4] X. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” Journal of the American Chemical Society, Vol. 128, No. 6, 2006, pp. 2115-2120. doi:10.1021/ja057254a
[5] M. Moreno-Manas and R. Pleixats, “Formation of Carbon-Carbon Double Bonds under Catalysis by Transition Metal Nanoparticles,” Accounts of Chemical Research, Vol. 36, No. 8, 2003, pp. 638-643. doi:10.1021/ar020267y
[6] S. Meltzer, R. Resch, B. E. Koel, M. E. Thompson, A. Madhukar, A. A. G. Requicha and P. Will, “Fabrication of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle Templates,” Langmuir, Vol. 17, No. 5, 2001, pp. 1713-1718. doi:10.1021/la001170s
[7] S. L. Westcott, S. J. Oldenburg, T. R. Lee and N. J. Halas, “Formation and Adsorption of Gold Nanoparticle-Clusters on Functionalized Silica Nanoparticle Surfaces,” Langmuir, Vol. 14, No. 19, 1998, pp. 5396-5401. doi:10.1021/la980380q
[8] V. F. Puntes, K. M. Krishnan and A. P. Alivisatos, “Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt,” Science, Vol. 291, No. 5511, 2001, pp. 21152117. doi:10.1126/science.1057553
[9] Z. A. Peng and X. J. Peng, “Nearly Monodisperse and Shape-Controlled CDSE Nanocrystals via Alternative Routes: Nucleation and Growth,” Journal of the American Chemical Society, Vol. 124, No. 13, 2002, pp. 33433353. doi:10.1021/ja0173167
[10] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. J. Whyman, “Synthesis of Thiol Derivatised Gold Nanoparticles in a Two-Phase Liquid/Liquid System,” Journal of the Chemical Society, Chemical Communications, No. 7, 1994, pp. 801-802. doi:10.1039/c39940000801
[11] D. I. Gittins, F. Caruso, “Biological and Physical Applications of Water-Based Metal Nanoparticles Synthesised in Organic Solution,” ChemPhysChem, Vol. 3, No. 1, 2002, pp. 110-113. doi:10.1002/1439-7641(20020118)3:1<110::AID-CPHC110>3.0.CO;2-Q
[12] J. L. Gardea-Torresdey, J. G. Parsons, E. Gomez, J. Peralta-Videa, H. E. Troiani, P. Santiago and M. Jose-Yacaman, “Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants,” Nano Letters, Vol. 2, No. 4, 2002, pp. 397-401. doi:10.1021/nl015673+
[13] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong and C. Chen, “Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf,” Nanotechnology, Vol. 18, No. 10, 2007, p. 105104. doi:10.1088/0957-4484/18/10/105104
[14] S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, “Biological Synthesis of Triangular Gold Nanoprisms,” Nature Materials, Vol. 3, No. 7, 2004, pp. 482-488. doi:10.1038/nmat1152
[15] M. N. Nadagouda, “Green Synthesis of Au Nanostructures at Room Temperature Using Biodegradable Plant Surfactants,” Crystal Growth and Design, Vol. 9, No. 11, 2009, pp. 4979-4983. doi:10.1021/cg9007685
[16] J. Xie, J. Y. Lee, D. I. Wang and Y. P. Ting, “Identification of Active Biomolecules in the High Yield Synthesis of Single-Crystalline Gold Nanoplates in Algal Solutions,” Small, Vol. 3, No. 4, 2007, pp. 672-682. doi:10.1002/smll.200600612
[17] B. Liu, J. Xie, J. Y. Lee, Y. P. Ting and J. P. Chen, “Optimization of High Yield Biological Synthesis of Single Crystalline Gold Nanoplates,” The Journal of Physical Chemistry B, Vol. 109, No. 32, 2005, pp. 15256-15263. doi:10.1021/jp051449n
[18] S. Brown, M. Sarikaya and E. Johnson, “A Genetic Analysis of Crystal Growth,” Journal of Molecular Biology, Vol. 299, No. 3, 2000, pp. 725-735. doi:10.1006/jmbi.2000.3682
[19] M. Sastry, A. Ahmad, M. I. Khan and R. Kumar, “Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete,” Current Science, Vol. 85, No. 2, 2003, pp. 162-170.
[20] P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar and M. Sastry, “Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum,” Chembiochem, Vol. 3, No. 5, 2002, pp. 461-463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
[21] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Ramani, R. Parischa, P. V. Ajayakumar, M. Alam, M. Sastry and R. Kumar, “Bioreduction of Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nano-particles Formed,” Angewandte Chemie International Edition England, Vol. 40, No. 19, 2001, pp. 3585-3588. doi:10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K
[22] Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nano-particles,” Science, Vol. 298, No. 5601, 2002, pp. 2176-2179. doi:10.1126/science.1077229
[23] C. J. Murphy, A. M. Gole, S. E. Hunyadi and C. J. Orendorff, “One Dimensional Colloidal Gold and Silver Nanostructures,” Inorganic Chemistry, Vol. 45, No. 19, 2006, pp. 7544-7554. doi:10.1021/ic0519382
[24] L. Pei, K. Mori and M. Adachi, “Formation Process of Two Dimensional Networked Gold Nanowires by Citrate Reduction of and the Shape Stabilization,” Langmuir, Vol. 20, No. 18, 2004, pp.7837-7843. doi:10.1021/la049262v
[25] Z. Li, Z. Liu, J. Zhang, B. Han, J. Du, Y. Gao and T. Jiang, “Synthesis of Single-Crystal Gold Nanosheets of Large Size in Ionic Liquids,” The Journal of Physical Chemistry B, Vol. 109, No. 30, 2005, pp. 14445-14448. doi:10.1021/jp0520998
[26] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, “Photoinduced Conversion of Silver Nanospheres to Nanoprisms,” Science, Vol. 294, No. 5548, 2001, pp. 1901-1903. doi:10.1126/science.1066541
[27] Y. Sun, B. Mayers and Y. Xia, “Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process,” Nano Letters, Vol. 3, No. 5, 2003, pp. 675-679. doi:10.1021/nl034140t
[28] R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz and C. A. Mirkin, “Controlling Anisotropic Nanoparticle Growth through Plasmon Excitation,” Nature, Vol. 425, No. 6957, 2003, pp. 487-490. doi:10.1038/nature02020
[29] S. Chen and D. L. Carroll, “Synthesis and Characterization of Truncated Triangular Silver Nanoplates,” Nano Letters, Vol. 2, No. 9, 2002, pp. 1003-1007. doi:10.1021/nl025674h
[30] B. D. Chithrani, A. A. Ghazani and W. C. Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Letters, Vol. 6, No. 4, 2006, pp. 662-668. doi:10.1021/nl052396o
[31] A. Ahmad, S. Senapati, M. I. Khan, R. Kumar and M. Sastry, “Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp.,” Langmuir, Vol. 19, No. 8, 2003, pp. 3550-3553. doi:10.1021/la026772l
[32] T. Klaus, R. Joerger, E. Olsson and C. G. Granqvist, “Silver-Based Crystalline Nanoparticles, Microbially Fabricated,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, No. 24, 1999, pp. 13611-13614. doi:10.1073/pnas.96.24.13611
[33] T. H. Ha, H. J. Koo and B. H. Chung, “Shape-Controlled Syntheses of Gold Nanoprisms and Nanorods Influenced by Specific Adsorption of Halide Ions,” The Journal of Physical Chemistry C, Vol. 111, No. 3, 2007, pp. 11231130. doi:10.1021/jp066454l
[34] O. M. Magnussen, “Ordered Anion Adlayers on Metal Electrode Surfaces,” Chemical Reviews, Vol. 102, No. 3, 2002, pp. 679-725. doi:10.1021/cr000069p
[35] J. E. Millstone, W. Wei, M. R. Jones, H. Yoo and C. A. Mirkin, “Iodide Ions Control Seed-Mediated Growth of Anisotropic Gold Nanoparticles,” Nano Letters, Vol. 8, No. 8, 2008, pp. 2526-2529. doi:10.1021/nl8016253
[36] F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose and T. Kunitake, “Characterization of Polyelectrolyte-Protein Multilayer Films by Atomic Force Microscopy, Scanning Electron Microscopy, and Fourier Transform Infrared Reflection-Absorption Spectroscopy,” Langmuir, Vol. 14, No. 16, 1998, pp. 4559-4565. doi:10.1021/la971288h
[37] J. Xie, J. Y. Lee, D. I. Wang and Y. P. Ting, “Silver Nanoplates: From Biological to Biomimetic Synthesis,” ACS Nano, Vol. 1, No. 5, 2007, pp. 429-439. doi:10.1021/nn7000883

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.