Share This Article:

Lichen-Spruce Woodland Early Indicators of Ecological Resilience Following Silvicultural Disturbances in Québec’s Closed-Crown Forest Zone

Abstract Full-Text HTML XML Download Download as PDF (Size:1314KB) PP. 749-765
DOI: 10.4236/ajps.2013.43A094    4,268 Downloads   6,427 Views   Citations


Lichen woodlands (LW) located in the closed-crown boreal forest are not a successional stage moving towards a closed black spruce feathermoss stand (FM), but an alternative stable state, due to their previous forest history, and the occurrence of LWs located nearby closed-crown FM stands. Therefore, afforestation in those LWs through site preparation and plantation could shift back LW into FM stands. We implemented an experimental design with different combinations of silvicultural treatments in both site types (LW, FM). We monitored the evolution of plant diversity and the physiology of three bio-indicators (Picea mariana, Kalmia angustifolia, Rhododendron groenlandicum) in different microsites created by the silvicultural treatments. The return to the initial composition was noticed only two years after treatments, especially in the LW stands, thus indicating a higher level of early ecosystem resilience in LWs compared to FM stands. Mean species cover, especially in the FM stands, decreased the most in the skid trails created by logging, probably due to a lack of acclimation of bryophytes to open stand conditions. Conversely, ericaceous shrubs and lichens found in the LWs were already acclimated to open stand conditions, which give to LWs a restructuring advantage compared to FM plant communities after silvicultural treatments. Overall, FM and LW short-term resilience was similar, indicating equally efficient ecosystem reorganization in both stands. The comparable early resilience in managed LW and FM stands, in terms of plant biodiversity, contradicts the presumed fragility of LW stands, especially in this case where LWs are assumed to be an alternative stable state created by compound disturbances. Silvicultural treatments maintained the functional group diversity in LWs, a key element for ecosystem resilience. Therefore, this study support the idea that plantation following site preparation in LWs could be a valuable management strategy to reach several objectives, such as increasing forest carbon sinks.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Gonzalez, F. Hébert, J. Boucher, P. Sirois and D. Lord, "Lichen-Spruce Woodland Early Indicators of Ecological Resilience Following Silvicultural Disturbances in Québec’s Closed-Crown Forest Zone," American Journal of Plant Sciences, Vol. 4 No. 3A, 2013, pp. 749-765. doi: 10.4236/ajps.2013.43A094.


[1] E. H. Hamilton and S. Haeussler, “Modeling Stability and Resilience after Slashburning across a Sub-Boreal to Subalpine Forest Gradient in British Columbia,” Canadian Journal of Forest Research, Vol. 38, No. 2, 2008, pp. 304-316. doi:10.1139/X07-098
[2] M. D. Morecroft, H. Q. P. Crick, S. J. Duffield and N. A. Macgregor, “Resilience to Climate Change: Translating Principles into Practice,” Journal of Applied Ecology, Vol. 49, No. 4, 2012, pp. 547-551.
[3] C. S. Holling, “Resilience and Stability of Ecological Systems,” Annual Review of Ecology, and Systematics, Vol. 4, 1973, pp. 1-23. doi:10.1146/
[4] S. Payette, “Fire as a Controlling Process in the North American Boreal Forest. A Systems Analysis of the Global Boreal Forest,” Cambridge University Press, Cambridge, 1992.
[5] M. G. Turner, W. H. Romme, R. H. Gardner, V. O’Neill and T. K. Kratz, “A Revised Concept of Landscape Equilibrium: Distur-bance and Stability on Scaled Landscapes,” Landscape Ecology, Vol. 8, No. 3, 1993, pp. 213227. doi:10.1007/BF00125352
[6] J. P. P. Jasinski and S. Payette, “The Creation of Alternative Stable States in the Southern Boreal Forest, Québec, Canada,” Ecological Monographs, Vol. 75, No. 4, 2005, pp. 561-583. doi:10.1890/04-1621
[7] M. Scheffer, S. Carpenter, J. A. Foley and C. Folke, “Catastrophic Shifts in Ecosystems,” Nature, Vol. 413, No. 6856, 2001, pp. 591-596. doi:10.1038/35098000
[8] J. S. Rowe, “Forest Regions of Canada,” Information Canada, Ottawa, 1972.
[9] H. St-Pierre, R. Gagnon and P. Bellefleur, “Régénération Après Feu de L'épinette Noire (Picea mariana) et du Pin Gris (Pinus banksiana) Dans la Forêt Boréale, Québec,” Canadian Journal of Forest Research, Vol. 22, No. 4, 1992, pp. 474-481. doi:10.1139/x92-062
[10] F. Girard, S. Payette and R. Gagnon, “Rapid Expansion of Lichen Woodlands within the Closed-Crown Boreal Forest Zone over the Last 50 Years Caused by Stand Disturbances in Eastern Canada,” Journal of Biogeography, Vol. 35, No. 3, 2008, pp. 529-537. doi:10.1111/j.1365-2699.2007.01816.x
[11] S. Payette, N. Bhiry, A. Delwaide and M. Simard, “Origin of the Lichen Woodland at Its Southern Range Limit in Eastern Canada: The Catastrophic Impact of Insect Defoliators and Fire on the Spruce-Moss Forest,” Canadian Journal of Forest Research, Vol. 30, No. 2, 2000, pp. 288-305. doi:10.1139/x99-207
[12] H. Le Goff, and L. Sirois, “Black Spruce and Jack Pine Dynamics Simulated under Varying Fire Cycles in the Northern Boreal Forest of Quebec, Canada,” Canadian Journal of Forest Research, Vol. 34, No. 12, 2004, pp. 2399-2409. doi:10.1139/x04-121
[13] C. S. Brown and J. F. Johnstone, “Once Burned, Twice Shy: Repeat Fires Reduce Seed Availability and Alter Substrate Constraints on Picea mariana Regeneration,” Forest Ecology and Management, Vol. 266, No. 1, 2011, pp. 34-41. doi:10.1016/j.foreco.2011.11.006
[14] F. Girard, S. Payette and R. Gagnon, “Origin of the Lichen-Spruce Woodland in the Closed-Crown Forest Zone of Eastern Canada,” Global Ecology and Biogeography, Vol. 18, No. 3, 2009, pp. 291-303. doi:10.1111/j.1466-8238.2009.00449.x
[15] M. Veilleux-Nolin and S. Payette, “Influence of Recent Fire Season and Severity on Black Spruce Regeneration in Spruce-Moss Forests,” Canadian Journal of Forest Research, Vol. 1327, No. 7, 2012, pp. 1316-1327. doi:10.1139/x2012-098
[16] R. Gagnon and H. Morin, “Les Forêts D’épinette Noire du Québec: Dynamique, Perturbations et Biodiversité,” Le Naturaliste Canadien, Vol. 125, No. 3, 2001, pp. 26-35.
[17] G. J. Nabuurs, O. Masera, K. Andrasko, Benitez-Ponce, R. Boer, M. Dutschke, E. Elsiddig, J. Ford-Robertson, P. Frumhoff, T. Karjalainen, O. Krankina, W. A. Kurz, M. Matsumoto, W. Oyhantcabal, N. H. Ravindranath, M. J. Sanz Sanchez and X. Zhang, “Forestry,” In: B. Metz, O. R. Davidson, P. R. Bosch, R. Dave and L. A. Meyer, Eds., Climate Change 2007: Mitigation (Contribution of Working Group III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change), Cambridge University Press, Cambridge, 2007, pp. 541-584.
[18] S. Gaboury, J.-F. Boucher, C. Villeneuve, D. Lord and R. Gagnon, “Estimating the Net Carbon Balance of Boreal Open Woodland Afforestation: A Case-Study in Québec’s Closed-Crown Boreal Forest,” Forest Ecology and Management, Vol. 257, No. 2, 2009, pp. 483-494. doi:10.1016/j.foreco.2008.09.037
[19] J.-F. Boucher, P. Trem-blay, S. Gaboury and C. Villeneuve, “Can Boreal Afforestation Help Offset Incompressible GHG Emissions from Canadian Industries?” Process Safety and Environmental Protection, Vol. 90, No. 6, 2012, pp. 459-466. doi:10.1016/j.psep.2012.10.011
[20] A. Shvidenko, S. Nilsson and V. Roshkov, “Possibilities for Increased Carbon Sequestra-tion through the Implementation of Rational Forest Management in Russia,” Water, air, and Soil Pollution, Vol. 94, No. 1-2, 1997, pp. 137-162. doi:10.1007/BF02407099
[21] F. Hébert, J.-F. Boucher, P. Y. Bernier and D. Lord, “Growth Response and Water Relations of 3-Year-Old Planted Black Spruce and Jack Pine Seedlings in Site Prepared Lichen Woodlands,” Forest Ecology and Management, Vol. 223, No. 1-3, 2006, pp. 226-236. doi:10.1016/j.foreco.2005.11.005
[22] A. O. Awiti, “Biological Diversity and Resilience: Lessons from the Recovery of Cichlid Species in Lake Victoria,” Ecology and Society, Vol. 16, No. 1, 2011, pp. 1-11.
[23] E. K. Dodson, D. W. Peterson and R. J. Harrod, “Understory Vegetation Response to Thinning and Burning Restoration Treatments in Dry Conifer Forests of the Eastern Cascades, USA,” Forest Ecology and Management, Vol. 255, No. 8-9, 2008, pp. 3130-3140. doi:10.1016/j.foreco.2008.01.026
[24] M. R. Roberts and L. Zhu, “Early Response of the Herbaceous Layer to Harvesting in a Mixed Coniferous—Deciduous Forest in New Brunswick, Canada,” Forest Ecology and Management, Vol. 155, No. 1-3, 2002, pp. 17-31. doi:10.1016/S0378-1127(01)00544-8
[25] F. Hébert, N. Thiffault, J.-C. Ruel and A. D. Munson, “Ericaceous Shrubs Affect Black Spruce Physiology Independently from Inherent Site Fertility,” Forest Ecology and Management, Vol. 260, No. 2, 2010, pp. 219-228. doi:10.1016/j.foreco.2010.04.026
[26] F. Hébert, N. Thiffault, J.-C. Ruel and A. D. Munson, “Comparative Physiological Responses of Rhododendron groenlandicum and Regenerating Picea mariana Following Partial Canopy Removal in Northeastern Quebec, Canada,” Canadian Journal of Forest Research, Vol. 40, No. 9, 2010, pp. 1791-1802. doi:10.1139/X10-124
[27] J.-P. Saucier, J.-F. Bergeron, P. Grondin and A. Robitaille, “Les Régions écologiques du Québec Méridional,” Ministère des Ressources Naturelles du Québec, Ste-Foy, Québec, 2000.
[28] Environment Canada, “Climatic Normals and Means, Chutedes-Passes, Year 1971-2000,” Atmospheric Environment Service, Environment Canada, 2008.
[29] K. R. Clarke and R. M. Warwick, “Change in Marine Communities: An Approach to Statistical Analysis and Interpretation,” Plymouth Marine Laboratory, Plymouth, 1994.
[30] T. Sen Tran and R. R. Simard, “Mehlich III-Extractable Elements,” In: M. L. Carter, Ed., Soil Sampling and Methods of Analysis, Lewis Publishers, Boca Raton, 2003, pp. 43-49.
[31] Q. P. Quinn and M. J. Keough, “Experimental Design and Data Analysis for Biologists,” Cambridge University Press, Cambridge, 2002. doi:10.1017/CBO9780511806384
[32] R. D. Wolfinger and M. Chang, “Comparing the SAS GLM and MIXED Procedures for Repeated Measures,” In: Proceedings of Twentieth Annual SAS Users Group Conference, SAS Institute, Cary, 1995, p. 11.
[33] J. Devore and R. Peck, “Introductory Statistics,” 2nd Edition, West Publishing Company, St-Paul, 1994.
[34] J. R. Bray and J. T. Curtis, “An Ordination of the Upland Forest Communities of Southern Wisconsin,” Ecological Monographs, Vol. 27, No. 4, 1957, pp. 151-164. doi:10.2307/1942268
[35] N. Thiffault, A. D. Munson, R. Fournier and R. Bradley, “La Relation éricacées—Conifères Bonheur D’oppression?” Le Naturaliste Canadien, Vol. 129, No. 2, 2005, pp. 57-61.
[36] S. Haeussler, P. Bartemucci and L. Bedford, “Succession and Resilience in Boreal Mixedwood Plant Communities 15-16 Years after Silvicultural Site Preparation,” Forest Ecology and Management, Vol. 199, No. 2-3, 2004, pp. 349-370. doi:10.1016/j.foreco.2004.05.052
[37] B. Harvey and S. Brais, “Effects of Mechanized Careful Logging on Natural Regeneration and Vegetation Competition in the Southeastern Canadian Boreal Forest,” Canadian Journal of Forest Research, Vol. 32, No. 4, 2002, pp. 653-666. doi:10.1139/x02-006
[38] S. G. Newmaster, W. C. Parker, F. W. Bell and J. M. Paterson, “Effects of Forest Floor Disturbances by Mechanical Site Preparation on Floristic Diversity in a Central Ontario Clearcut,” Forest Ecology and Management, Vol. 246, No. 2-3, 2007, pp. 196-207. doi:10.1016/j.foreco.2007.03.058
[39] G. Brumelis and T. Carleton, “The Vegetation of PostLogged Black Spruce Lowlands in Central Canada. II. Understorey Vegetation,” Journal of Applied Ecology, Vol. 26, No. 1, 1989, pp. 321-339. doi:10.2307/2403670
[40] N. J. Fenton, K. A. Frego and M. R. Sims, “Changes in Forest Floor Bryophyte (Moss and Liverwort) Communities 4 Years after Forest Harvest,” Canadian Journal of Botany, Vol. 81, No. 7, 2003, pp. 714-731. doi:10.1139/b03-063
[41] R. G. Bloom and A. U. Mallik, “Indirect Effects of Black Spruce (Picea mariana) Cover on Community Structure and Function in Sheep Laurel (Kalmia angustifolia) Dominated Heath of Eastern Canada,” Plant and Soil, Vol. 265, No. 1-2, 2004, pp. 279-293. doi:10.1007/s11104-005-0508-4
[42] S. H. Yamasaki, J. W. Fyles and B. D. Titus, “Interactions among Kalmia angustifolia, Soil Characteristics, and the Growth and Nutrition of Black Spruce Seedlings in Two Boreal Newfoundland Plantations of Contrasting Fertility,” Canadian Journal of Forest Research, Vol. 32, No. 12, 2002, pp. 2215-2224. doi:10.1139/x02-119
[43] A. U. Mallik, “Conifer Regeneration Problems in Boreal and Temperate Forests with Ericaceous Understory: Role of Disturbance, Seedbed Limitation, and Keystone Species Change,” Critical Reviews in Plant Sciences, Vol. 22, No. 3-4, 2003, pp. 341-366. doi:10.1080/713610860
[44] A. U. Mallik, “Black Spruce Growth and Understory Species Diversity with and without Sheep Laurel,” Agronomy Journal, Vol. 93, No. 1, 2001, pp. 92-98. doi:10.2134/agronj2001.93192x
[45] A. Wallstedt, A. Coughlan, A. D. Munson, M. C. Nilsson and H. A. Margolis, “Mechanisms of Interaction between Kalmia angustifolia Cover and Picea mariana Seedlings,” Canadian Journal of Forest Research, Vol. 32, No. 11, 2002, pp. 2022-2031. doi:10.1139/x02-124
[46] N. Thiffault, V. Roy, G. Prégent, G. Cyr, R. Jobidon and J. Ménétrier, “La Sylviculture des Plantations Résineuses au Québec,” Le Naturaliste Canadien, Vol. 127, No. 1, 2003, pp. 63-80.
[47] A. D. Munson and V. R. Timmer, “Soil-Nitrogen Dynamics and Nutrition of Pine Following Silvicultural Treatments in Boreal and Great-Lakes-St-Lawrence Plantations,” Forest Ecology and Management, Vol. 76, No. 1-3, 1995, pp. 169-179. doi:10.1016/0378-1127(95)03547-N
[48] S. Yamasaki, J. W. Flyes, K. N. Egger and B. D. Titus, “The Effect of Kalmia angustifolia on the Growth, Nutrition, and Ectomycorrhizal Symbiont Community of Black Spruce,” Forest Ecology and Management, Vol. 105, No. 1-3, 1998, pp. 197-207. doi:10.1016/S0378-1127(97)00285-5
[49] N. Thiffault, B. D. Titus and A. D. Munson, “Black Spruce Seedlings in a KalmiaVaccinium Association: Microsite Manipulation to Explore Interactions in the Field,” Canadian Journal of Forest Research, Vol. 34, No. 8, 2004, pp. 1657-1668. doi:10.1139/x04-046
[50] K. A. Kershaw and W. R. Rouse, “Studies on Lichen-Dominated Systems. I. The Water Relations of Cladonia alpestris,” Canadian Journal of Botany, Vol. 49, No. , 1971, pp. 1389-1399. doi:10.1139/b71-195
[51] K. A. Kershaw, “Studies on Lichen-Dominated Systems. XX. An Examination of Some Aspects of the Northern Boreal Lichen Woodlands in Canada,” Canadian Journal of Botany, Vol. 55, No. 4, 1977, pp. 393-410. doi:10.1139/b77-050
[52] R. Walsh, G. Rhéaume and P.-M. Marotte, “Cahier des Objectifs de Protection du Règlement sur les Normes D’intervention Dans les Forêts du Domaine Public (RNI),” Gouvernement du Québec, Ministère des Ressources Naturelles, Québec, 1997.
[53] N. Mansuy, S. Gauthier and Y. Bergeron, “Afforestation Opportunities When Stand Productivity Is Driven by a High Risk of Natural Disturbance: A Review of the Open Lichen Woodland in The eastern Boreal Forest of Canada,” Mitigation and Adaptation Strategies for Global Change, Vol. 18, No. 2, 2012, pp. 1-20. doi:10.1007/s11027-012-9362-x
[54] T. Elmqvist, C. Folke, M. Nystr?m, G. Peterson, J. Bengtsson and B. Walker, “Response Diversity, Ecosystem Change, and Resilience,” Frontiers in Ecology and the Environment, Vol. 1, No. 9, 2003, pp. 488-494. doi:10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
[55] C. Nilsson and G. Grelsson, “The Fragility of Ecosystems: A Review,” Journal of Applied Ecology, Vol. 32, No. 4, 1995, pp. 677-692. doi:10.2307/2404808
[56] R. Courtois, J.-P. Ouellet, L. Breton, A. Gingras and C. Dussault, “Effects of Forest Disturbance on Density, Space Use, and Mortality of Woodland Caribou,” Ecoscience, Vol. 14, No. 4, 2007, pp. 491-498. doi:10.2980/1195-6860(2007)14[491:EOFDOD]2.0.CO;2
[57] C. R. Drever, G. Peterson, C. Messier, Y. Bergeron and M. Flannigan, “Can Forest Management Based on Natural Disturbances Maintain Ecological Resilience?” Canadian Journal of Forest Research, Vol. 36, No. 9, 2006, pp. 2285-2299. doi:10.1139/x06-132
[58] P. Y. Bernier, R. Desjardins, Y. Karimi-Zindashty, D. Worth, A. Beaudoin, Y. Luo and S. Wang, “Boreal Lichen Woodlands: A Possible Negative Feedback to Climate Change in Eastern North America,” Agricultural and Forest Meteorology, Vol. 151, No. 4, 2011, pp. 521-528. doi:10.1016/j.agrformet.2010.12.013

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.