Share This Article:

Non-Markovian Dynamics of an Open Two-Level System with Amplitude-Phase Damping

Abstract Full-Text HTML Download Download as PDF (Size:234KB) PP. 27-33
DOI: 10.4236/jqis.2013.31007    3,357 Downloads   6,304 Views   Citations

ABSTRACT

By use of the measure, the backflow of information presented recently, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment via amplitude-phase coupling. In the limit of weak coupling between the system and its reservoir, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained. Numerical simulations show that the amplitude and phase dampings can produce destructive interference to the backflow of information, leading to the weaker non-Markovianity of the compound dynamics compared with the dynamics of a single amplitude or phase damping model. We also study the characteristics of the initial-state pairs that maximize the backflow of information.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Tang, G. Wang, Z. Fan and H. Zeng, "Non-Markovian Dynamics of an Open Two-Level System with Amplitude-Phase Damping," Journal of Quantum Information Science, Vol. 3 No. 1, 2013, pp. 27-33. doi: 10.4236/jqis.2013.31007.

References

[1] H. P. Breuer and F. Petruccione, “The Theory of Open Quantum Systems,” Oxford University Press, Oxford, 2007. doi:10.1093/acprof:oso/9780199213900.001.0001
[2] Y. Kubota and K. Nobusada, “Applicability of Site-Basis Time-Evolution Equation for Thermalization of Exciton States in a Quantum Dot Array,” Journal of the Physical Society of Japan, Vol. 78, No. 11, 2009, Article ID: 114603. doi:10.1143/JPSJ.78.114603
[3] Y. H. Ji and J. J. Hu, “Entanglement and Decoherence of Coupled Superconductor Qubits in a Non-Markovian Environments,” Chinese Physics B, Vol. 19, No. 6, 2010, Article ID: 060304. doi:10.1088/1674-1056/19/6/060304
[4] J. Shao, “Decoupling Quantum Dissipation Interaction via Stochastic Fields,” Journal of Chemical Physics, Vol. 120, No. 11, 2004, p. 5053. doi:10.1063/1.1647528
[5] A. W. Chin, A. Datta, F. Caruso, S. F. Huelga and M. B. Plenio, “Noise-Assisted Energy Transfer in Quantum Networks and Light-Harvesting Complexes,” New Journal of Physics, Vol. 12, No. 6, 2010, Article ID: 065002. doi:10.1088/1367-2630/12/6/065002
[6] A. G. Dijkstra and Y. Tanimura, “Non-Markovian Entanglement Dynamics in the Presence of System-Bath Coherence,” Physical Review Letters, Vol. 104, No. 25, 2010, Article ID: 250401. doi:10.1103/PhysRevLett.104.250401
[7] B. Bellomo, R. Lo Franco and G. Compagno, “Non-Markovian Effects on the Dynamics of Entanglement,” Physical Review Letters, Vol. 99, No. 16, 2007, Article ID: 160502. doi:10.1103/PhysRevLett.99.160502
[8] A. W. Chin, S. F. Huelga and M. B. Plenio, “Quantum Metrology in Non-Markovian Environments,” Physical Review Letters, Vol. 109, No. 23, 2012, Article ID: 233601. doi:10.1103/PhysRevLett.109.233601
[9] R. Vasile, S. Olivares, M. G. A. Paris and S. Maniscalco, “Continuous-Variable Quantum Key Distribution in Non- Markovian Channels,” Physical Review A, Vol. 83, No. 4, 2011, Article ID: 042321. doi:10.1103/PhysRevA.83.042321
[10] H. P. Breuer, E. M. Laine and J. Piilo, “Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems,” Physical Review Letters, Vol. 103, No. 21, 2009, Article ID: 210401. doi:10.1103/PhysRevLett.103.210401
[11] A. Rivas, S. F. Huelga and M. B. Plenio, “Entanglement and Non-Markovianity of Quantum Evolutions,” Physical Review Letters, Vol. 105, No. 5, 2010, Article ID: 050403. doi:10.1103/PhysRevLett.105.050403
[12] M. M. Wolf, J. Eisert, T. S. Cubitt and J. I. Cirac, “Assessing Non-Markovian Quantum Dynamics,” Physical Review Letters, Vol. 101, No. 15, 2008, Article ID: 150402. doi:10.1103/PhysRevLett.101.150402
[13] A. R. Usha Devi, A. K. Rajagopal, Sudha, “Open-System Quantum Dynamics with Correlated Initial States, Not Completely Positive Maps, and Non-Markovianity,” Physical Review A, Vol. 83, No. 2, 2011, Article ID: 022109. doi:10.1103/PhysRevA.83.022109
[14] X. M. Lu, X. G. Wang and C. P. Sun, “Quantum Fisher Information Flow and Non-Markovian Processes of Open Systems,” Physical Review A, Vol. 82, No. 4, 2010, Article ID: 042103. doi:10.1103/PhysRevA.82.042103
[15] S. Luo, S. Fu and H. Song, “Quantifying Non-Markovianity via Correlations,” Physical Review A, Vol. 86, No. 4, 2012, Article ID: 044101. doi:10.1103/PhysRevA.86.044101
[16] D. Chruscinski, A. Kossakowski and A. Rivas, “Measures of Non-Markovianity: Divisibility versus Backflow of Information,” Physical Review A, Vol. 83, No. 5, 2011, Article ID: 052128. doi:10.1103/PhysRevA.83.052128
[17] H. S. Zeng, N. Tang, Y. P. Zheng and G. Y. Wang, “Equivalence of the Measures of Non-Markovianity for Open Two-Level,” Physical Review A, Vol. 84, No. 3, 2011, Article ID: 032118. doi:10.1103/PhysRevA.84.032118
[18] A. Shabani and D. A. Lidar, “Vanishing Quantum Discord is Necessary and Sufficient for Completely Positive Maps,” Physical Review Letters, Vol. 102, No. 10, 2009, Article ID: 100402. doi:10.1103/PhysRevLett.102.100402
[19] H. P. Breuer and B. Vacchini, “Structure of Completely Positive Quantum Master Equations with Memory Kernel,” Physical Review E, Vol. 79, No. 4, 2009, Article ID: 041147. doi:10.1103/PhysRevE.79.041147
[20] P. Haikka and S. Maniscalco, “Non-Markovian Dynamics of a Damped Driven Two-State System,” Physical Review A, Vol. 81, No. 5, 2010, Article ID: 052103. doi:10.1103/PhysRevA.81.052103
[21] K. W. Chang and C. K. Law, “Non-Markovian Master Equation for a Damped Oscillator with Time-Varying Parameters,” Physical Review A, Vol. 81, No. 5, 2010, Article ID: 052105. doi:10.1103/PhysRevA.81.052105
[22] W. J. Gu and G. Y. Li, “Non-Markovian Behavior for Spontaneous Decay of a V-Type Three-Level Atom with Quantum Interference,” Physical Review A, Vol. 85, No. 1, 2012, Article ID: 014101. doi:10.1103/PhysRevA.85.014101
[23] D. Chruscinski, A. Kossakowski and S. Pascazio, “Long-Time Memory in Non-Markovian Evolutions,” Physical Review A, Vol. 81, No. 3, 2010, Article ID: 032101. doi:10.1103/PhysRevA.81.032101
[24] P. Haikka, J. D. Cresser and S. Maniscalco, “Comparing Different Non-Markovianity Measures in a Driven Qubit System,” Physical Review A, Vol. 83, No. 1, 2011, Article ID: 012112. doi:10.1103/PhysRevA.83.012112
[25] X. Yin, J. Ma, X. Wang and F. Nori, “Spin Squeezing under Non-Markovian Channels by the Hierarchy Equation Method,” Physical Review A, Vol. 86, No. 1, 2012, Article ID: 012308. doi:10.1103/PhysRevA.86.012308
[26] J. Li, G. McKeown, F. L. Semiao and M. Paternostro, “Non-Markovian Effects on the Nonlocality of a Qubit-Oscillator System,” Physical Review A, Vol. 85, No. 2, 2012, Article ID: 022116. doi:10.1103/PhysRevA.85.022116
[27] J. S. Xu, C. F. Li, M. Gong, X. B. Zou, C. H. Shi, G. Chen and G. C. Guo, “Experimental Demonstration of Photonic Entanglement Collapse and Revival,” Physical Review Letters, Vol. 104, No. 10, 2010, Article ID: 100502. doi:10.1103/PhysRevLett.104.100502
[28] J. S. Xu, C. F. Li, C. J. Zhang, X. Y. Xu, Y. S. Zhang and G. C. Guo, “Experimental Investigation of the Non-Markovian Dynamics of Classical and Quantum Correlations,” Physical Review A, Vol. 82, No. 4, 2010, Article ID: 042328. doi:10.1103/PhysRevA.82.042328
[29] B. H. Liu, L. Li, Y. F. Huang, C. F. Li, G. C. Guo, E. M. Laine, H. P. Breuer and J. Piilo, “Experimental Control of the Transition from Markovian to Non-Markovian Dynamics of Open Quantum Systems,” Nature Physics, Vol. 7, No. 12, 2011, pp. 931-934. doi:10.1038/nphys2085
[30] J. S. Tang, C. F. Li, Y. L. Li, X. B. Zou, G. C. Gou, H. P. Breuer, E. M. Laine and J. Piilo, “Measuring Non-Markovianity of Processes with Controllable System-Environment Interaction,” Europhysics Letters, Vol. 97, No. 1, 2012, Article ID: 10002. doi:10.1209/0295-5075/97/10002
[31] S. Maniscalco, J. Piilo, F. Intravaia, F. Petruccione and A. Messina, “Lindblad and Non-Lindblad-Type Dynamics of a Quantum Brownian Particle,” Physical Review A, Vol. 70, No. 3, 2004, Article ID: 032113. doi:10.1103/PhysRevA.70.032113
[32] M. J. W. Hall, “Complete Positivity for Time-Dependent Qubit Master Equations,” Journal of Physics A: Mathematical and Theoretical, Vol. 41, No. 20, 2008, Article ID: 205302. doi:10.1088/1751-8113/41/20/205302
[33] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000.
[34] G. Clos and H. P. Breuer, “Quantification of Memory Effects in the Spin-Boson Model,” Physical Review A, Vol. 86, No. 1, 2012, Article ID: 012115. doi:10.1103/PhysRevA.86.012115
[35] J.-G. Li, J. Zou and B. Shao, “Non-Markovianity of the Damped Jaynes-Cummings Model with Detuning,” Physical Review A, Vol. 81, No. 6, 2010, Article ID: 062124. doi:10.1103/PhysRevA.81.062124
[36] E. M. Laine, J. Piilo and H. P. Breuer, “Measure for the Non-Markovianity of Quantum Processes,” Physical Review A, Vol. 81, No. 6, 2010, Article ID: 062115. doi:10.1103/PhysRevA.81.062115
[37] Z. Y. Xu, W. L. Yang and M. Feng, “Proposed Method for Direct Measurement of the Non-Markovian Character of the Qubits Coupled to Bosonic Reservoirs,” Physical Review A, Vol. 81, No. 4, 2010, Article ID: 044105. doi:10.1103/PhysRevA.81.044105
[38] Z. He, J. Zou, L. Li and B. Shao, “Effective Method of Calculating the Non-Markovianity N for Single-Channel Open Systems,” Physical Review A, Vol. 83, No. 1, 2011, Article ID: 012108. doi:10.1103/PhysRevA.83.012108
[39] M. Woldeyohannes and S. John, “Coherent Control of Spontaneous Emission near a Photonic Band Edge,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 5, No. 2, 2003, p. 43. doi:10.1088/1464-4266/5/2/201

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.