Share This Article:

Existence Solution for 5th Order Differential Equations under Some Conditions

Abstract Full-Text HTML Download Download as PDF (Size:50KB) PP. 279-282
DOI: 10.4236/am.2010.14035    3,399 Downloads   7,174 Views   Citations


We study a nonlinear differential equations in the Banach space of real functions and continuous on a bounded and closed interval. With the help of a suitable theorems (fixed point) and some boundary conditions, the 5th order nonlinear differential equations has at least one positive solution.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Odda, "Existence Solution for 5th Order Differential Equations under Some Conditions," Applied Mathematics, Vol. 1 No. 4, 2010, pp. 279-282. doi: 10.4236/am.2010.14035.


[1] R. P. Agarwal and D. Oregan, “Global Existence for Nonlinear Operator Inclusion,” Computers & Mathematics with Applications, Vol. 38, No. 11-12, 1999, pp. 131 -139.
[2] R. P. Agarwal, D. Oregan and P. J. Y. Wong, “Positive Solutions of Differential, Difference and Integral Equations,” Kluwer Academic, Dordrecht, 1999.
[3] M. El-Shahed, “Positive Solutions for Nonlinear Singular Third Order Boundary Value Problem,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, 2009, pp. 424-429.
[4] D. Guo and V. Lakshmikantham, “Nonlinear Problems in Abstract Cones,” Academic Press, San Diego, 1988.
[5] S. Li, “Positive Solutions of Nonlinear Singular Third- Order Two-Point Boundary Value Problem,” Journal of Mathematical Analysis and Applications, Vol. 323, No. 1, 2006, pp. 413-425.
[6] H. Sun and W. Wen, “On the Number of Positive Solutions for a Nonlinear Third Order Boundary Value Problem,” International Journal of Difference Equations, Vol. 1, No. 1, 2006, pp. 165- 176.
[7] R. P. Agarwal, M. Meehan and D. Oregan, “Fixed Point and Applications,” Cambridge University Press, Cambridge, 2001.
[8] B. Yang, “Positive Solutions for a Fourth Order Boundary Value Problem,” Electronic Journal of Qualitative Theory of differential Equations, Vol. 3, No. 1, 2005, pp. 1-17.
[9] S. Q. Zhang, “Existence of Solution for a Boundary Value Problem of Fractional Order,” Acta Mathematica Scientica, Vol. 26, No. 2, 2006, pp. 220-228.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.