Share This Article:

Characteristics and Photocatalytics Activities of Ce-Doped ZnO Nanoparticles

Abstract Full-Text HTML XML Download Download as PDF (Size:1327KB) PP. 145-152
DOI: 10.4236/msa.2013.42017    6,690 Downloads   11,400 Views   Citations


Ce-doped ZnO nanoparticles with various doping concentrations of cerium ion were prepared by the co-precipitation method. All prepared nanoparticles were characterized by electron spin resonance (ESR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectroscopy. All nanoparticles show X-ray diffraction pattern that matched with ZnO in its wurzite structure and average grain size was in the range of 13 - 16 nm. UV-Vis measurements indicated a red shift of the photophysical response of ZnO after doping that was exhibited in reflection spectra in the visible region between 300 - 800 nm. In addition, it has been found from electron spin resonance measurements that defects, which are likely to be oxygen vacancy and an electron trapped at cerium site are formed in our Ce-doped ZnO particles. Photocatalytic activities of Ce-doped ZnO were evaluated by irradiating the nanoparticles solution to ultraviolet light by taking methyl orange as organic dye. The experiment demonstrated that the photodegradation increased as doping concentrations increased at first and then decreased when the doping concentra- tion exceeded 9 at%. It is proposed that the photocatalytic activity is strongly dependent on the formation of oxygen vacancy and an electron trapped at cerium site.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Djaja and R. Saleh, "Characteristics and Photocatalytics Activities of Ce-Doped ZnO Nanoparticles," Materials Sciences and Applications, Vol. 4 No. 2, 2013, pp. 145-152. doi: 10.4236/msa.2013.42017.


[1] O. Carp, C. L. Huisman and A. Reller, “Photoinduced Reactivity of Titanium Dioxide,” Progress in Solid State Chemistry, Vol. 32, No. 1-2, 2004, pp. 33-177. doi:10.1016/j.progsolidstchem.2004.08.001
[2] I. K. Konstantinou and T. A. Albanis, “TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review,” Applied Catalysis B: Environmental, Vol. 49, No. 1, 2004, pp. 1-14. doi:10.1016/j.apcatb.2003.11.010
[3] S. Tanemura, L. Miao, W. Wunderlich, M. Tanemura, Y. Mori, S. Toh and K. Kaneko, “Fabrication and Charac terization of Anatase/Rutile-TiO2 Thin Films by Magne tron Sputtering: A Review,” Science and Technology of Advanced Materials, Vol. 6, No. 1, 2005, p. 11. doi:10.1016/j.stam.2004.06.002
[4] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes, “A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications,” Solar Energy Materials and Solar Cells, Vol. 90, No. 14, 2006, pp. 2011-2075. doi:10.1016/j.solmat.2006.04.007
[5] M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, “A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production,” Renewable and Sustainable Energy Reviews, Vol. 11, No. 3, 2007, pp. 401-425. doi:10.1016/j.rser.2005.01.009
[6] S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan and K. Ariga, “Photocatalytic Degradation of 2,4,6-Trichlorophenol Using Lanthanum Doped ZnO in Aqueous Suspension,” Catalysis Commu nications, Vol. 8, No. 9, 2007, pp. 1377-1382. doi:10.1016/j.catcom.2006.12.001
[7] T.-X. Liu, X.-Z. Li and F.-B. Li, “Enhanced Photocata Lytic Activity of Ce3+-TiO2 Hydrosols in Aqueous and Gaseous Phases,” Chemical Engineering Journal, Vol. 157, No. 2-3, 2010, pp. 475-482. doi:10.1016/j.cej.2009.12.010
[8] Y. Q. Wang, H. M. Cheng, Y. Z. Hao, J. M. Ma, W. H. Li and S. M. Cai, “Photoelectrochemical Properties of Metal Ion-Doped TiO2 Nanocrystalline Electrodes,” Thin Solid Films, Vol. 349, No. 1-2, 1999, pp. 120-125. doi:10.1016/S0040-6090(99)00239-4
[9] A.-W. Xu, Y. Gao and H.-Q. Liu, “The Preparation, Characterization, and Their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles,” Journal of Cata lysis, Vol. 207, No. 2, 2002, pp. 151-157. doi:10.1006/jcat.2002.3539
[10] W. Y. Su, E. X. Chen, L. Wu, X. C. Wang, X. X. Wang and X. Z. Fu, “Visible Light Photocatalysis on Praseo dymium(III)-Nitrate-Modified TiO2 Prepared by an Ultra sound Method,” Applied Catalysis B: Environmental, Vol. 77, No. 3-4, 2008, pp. 264-271. doi:10.1016/j.apcatb.2007.04.015
[11] Z. M. Shi and L. N. Jin, “Influence of La3+/Ce3+-Doping on Phase Transformation and Crystal Growth in TiO2-15 wt% ZnO Gels,” Journal of Non-Crystalline Solids, Vol. 35, No. 3, 2009, pp. 213-220. doi:10.1016/j.jnoncrysol.2008.10.010
[12] C. H. Liang, C. S. Liu, F. B. Li and F. Wu, “The Effect of Praseodymium on the Adsorption and Photocatalytic De gradation of Azo Dye in Aqueous Pr3+-TiO2 Suspen sion,” Chemical Engineering Journal, Vol. 147, No. 2-3, 2009, pp. 219-225. doi:10.1016/j.cej.2008.07.004
[13] G.-R. Li, X.-H. Lu, W.-X. Zhao, C.-Y. Su and Y.-X. Tong, “Controllable Electrochemical Synthesis of Ce4+ Doped ZnO Nanostructures from Nanotubes to Nanorods and Nanocages,” Crystal Growth and Design, Vol. 8, No. 4, 2008) 1276-1281. doi:10.1021/cg7009995
[14] J. H. Yang, M. Gao, L. L. Yang, Y. J. Zhang, J. H. Lang, D. D. Wang, Y. X. Wang, H. L. Liu and H. G. Fan, “Low-Temperature Growth and Optical Properties of Ce-Doped ZnO Nanorods,” Applied Surface Science, Vol. 255, No. 5, 2008, pp. 2646-2650. doi:10.1016/j.apsusc.2008.08.001
[15] J.-R. Duclère, B. Doggett, M. O. Henry, E. McGlynn, R. T. Rajendra Kumar, J.-P. Mosnier, A. Perrin and M. Guilloux-Viry, “(20-23) ZnO Thin Films Grown by Pulsed Laser Deposition on CeO2-Buffered r-Sapphire Substrate,” Journal of Applied Physics, Vol. 101, 2007, p. 13509. doi:10.1063/1.2404782
[16] R. Pérez-Casero, A. Gutiérrez-Llorente, O. Pons-Y-Moll, W. Seiler, R. M. Defourneau, D. Defourneau, E. Millon, J. Perrière, P. Goldner and B. Viana, “Er-Doped ZnO Thin Films Grown by Pulsed-Laser Deposition,” Journal of Applied Physics, Vol. 97, 2005, p. 54905. doi:10.1063/1.1858058
[17] X. M. Teng, H. T. Fan, S. S. Pan, C. Ye and G. H. Li, “Influence of Annealing on the Structural and Optical Properties of ZnO:Tb Thin Films ,” Journal of Applied Physics, Vol. 100, 2006, p. 53507. doi:10.1063/1.2227268
[18] J. S. John, J. L. Coffer, Y. Chen and R. F. Pinizzotto, “Size Control of Erbium-Doped Silicon Nanocrystals,” Applied Physics Letter, Vol. 77, 2000, p. 1635. doi:10.1063/1.1309022
[19] J. L. Bubendorff, J. Ebothe, A. El Hichou, R. Dounia and M. Addou, “Luminescent Spectroscopy and Imaging of Textured Sprayed Er-Doped ZnO Films in the Near Ul traviolet and Visible Regions,” Journal of Applied Phy sics, Vol. 100, 2006, p. 14505. doi:10.1063/1.2211347
[20] M. Alaoui Lamrani, M. Addou, Z. Soofiani, B. Sahraoui, J. Ebothé, A. El Hichou, N. Fellahi, J. C. Bernède and R. Dounia, “Cathodoluminescent and Nonlinear Optical Pro perties of Undoped and Erbium Doped Nanostructured ZnO Films Deposited by Spray Pyrolysis,” Optics Com munications, Vol. 277, No. 1, 2007, pp. 196-201. doi:10.1016/j.optcom.2007.04.033
[21] Z. Sofiani, S. Bouchta and M. Addou, “Third Harmonic Generation in Undoped and X Doped ZnO Films (X: Ce, F, Er, Al, Sn) Deposited by Spray Pyrolysis,” Journal of Applied Physics, Vol. 101, 2007, p. 63104. doi:10.1063/1.2711143
[22] N. Mais, J. P. Reithmaier, A. Forchel, M. Kohls, L. Spanhel and G. Müller, “Er Doped Nanocrystalline ZnO Planar Waveguide Structures for 1.55 μm Amplifier Ap plications,” Applied Physics Letter, Vol. 75, 2005, p. 1999. doi:10.1063/1.124897
[23] Y. Liu, Q. Yang and C. Xu, “Single-Narrow-Band Red Upconversion Fluorescence of ZnO Nanocrystals Codo ped with Er and Yb and Its Achieving Mechanism,” Journal of Applied Physics, Vol. 104, 2008, p. 64701. doi:10.1063/1.2980326
[24] A. George, S. K. Sharma, S. Chawla, M. M. Malik and M. S. Qureshi, “Detailed of X-Ray Diffraction and Photolu minescence Studies of Ce Doped ZnO Nanocrystals,” Journal of Alloys and Compounds, Vol. 509, No. 20, 2011, pp. 5942-5946. doi:10.1016/j.jallcom.2011.03.017
[25] J. Iqbal, X. F. Liu, H. C. Zhu, C. C. Pan, Y. Zhang, D. P. Yu and R. H. Yu, “Trapping of Ce Electrons in Band Gap and Room Temperature Ferromagnetism of Ce4+ Doped ZnO Nanowires,” Journal of Applied Physics, Vol. 106, 2009, p. 83515. doi:10.1063/1.3245325
[26] J. H. Lang, Q. Han, J. H. Yang, C. S. Li, X. Li, L. L. Yang, Y. J. Zhang, M. Gao, D. D. Wang and J. Cao, “Fabrication and Optical Properties of Ce-Doped ZnO Nanorods,” Journal of Applied Physics, Vol. 107, 2010, p. 74302. doi:10.1063/1.3318613
[27] L. R. Shah, W. G. Wang, H. Zhu, B. Ali, Y. Q. Song, H. W. Zhang, S. I. Shah and J. Q. Xiao, “Role of Dopant, Defect, and Host Oxide in the Observed Room Tem perature Ferromagnetism: Co-ZnO versus Co-CeO2,” Journal of Applied Physics, Vol. 105, 2009, p. 7C515. doi:10.1063/1.3068648
[28] A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays and A. Punnoose, “Ferromag netism in Chemically Synthesized CeO2 Nanoparticles by Ni Doping,” Physics Reviews B, Vol. 76, No. 16, 2007, p. 165206. doi:10.1103/PhysRevB.76.165206
[29] M. A. Mahmood, S. Baruah and J. Dutta, “Enhanced Vi sible Light Photocatalysis by Manganese Doping or Ra pid Crystallization with ZnO Nanoparticles,” Materials Chemistry and Physics, Vol. 130, No. 1-2, 2011, pp. 531 535. doi:10.1016/j.matchemphys.2011.07.018
[30] W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li and J. Xu, “Characteristics of ZnO:Zn Pho sphor Thin Films by Post-Deposition Annealing,” Nu clear Instruments and Methods in Physics Research Sec tion B: Beam Interactions with Materials and Atoms, Vol. 169, No. 1-4, 2000, pp. 59-63. doi:10.1016/S0168-583X(00)00017-3
[31] A. Jagannatha Reddy, M. K. Kokila, H. Nagabhushana, R. P. S. Chakradhar, C. Shivakumara, J. L. Rao and B. M. Nagabhushana, “Structural, optical and EPR studies on ZnO:Cu Nanopowders Prepared via Low Temperature Solution Combustion Synthesis,” Journal of Alloys and Compounds, Vol. 509, No. 17, 2011, pp. 5349-5355. doi:10.1016/j.jallcom.2011.02.043
[32] P. H. Kasai, “Electron Spin Resonance Studies of Donors and Acceptors in ZnO,” Physics Reviews, Vol. 130, No. 3, 1963, pp. 989-995. doi:10.1103/PhysRev.130.989
[33] K. M. Sancier, “ESR Investigation of Photodamage to Zinc Oxide Powders,” Surface Science, Vol. 21, No. 1, 1970, pp. 1-11. doi:10.1016/0039-6028(70)90059-2
[34] M. Schulz, “ESR Experiments on Ga Donors in ZnO Crystals,” Physica Status Solidi (A), Vol. 27, No. 1, 1975, pp. K5-K8. doi:10.1002/pssa.2210270140
[35] A. Hausmann and B. Schallenberger, “Interstitial Oxygen in Zinc Oxide Single Crystals,” Zeitschrift fur Physik, Vol. 31, 1978, pp. 269-273.
[36] Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei, J. F. Zhu and Y. J. Zhu, “Lumi nescence and Photocatalytic Activity of ZnO Nanocry stals:? Correlation between Structure and Property,” Inor ganic Chemistry, Vol. 46, No. 16, 2007, pp. 6675-6682. doi:10.1021/ic062394m
[37] J. Gupta, K. C. Barick and D. Bahadur, “Defect Mediated Photocatalytic Activity in Shape-Controlled ZnO Nano structures,” Journal Alloys and Compounds, Vol. 509, No. 23 , 2011, pp. 6725-6730. doi:10.1016/j.jallcom.2011.03.157
[38] N. Daneshvar, D. Salari and A. R. Khataee, “Photo catalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162, No. 2-3, 2004, pp. 317-322. doi:10.1016/S1010-6030(03)00378-2
[39] F. B. Li, X. Z. Li, M. F. Hou, K. W. Cheah and W. C. H. Choy, “Enhanced Photocatalytic Activity of Ce3+-TiO2 for 2-Mercaptobenzothiazole Degradation in Aqueous Suspension for Odour Control,” Applied Catalysis A: General, Vol. 285, No. 1-2, 2005, pp. 181-189. doi:10.1016/j.apcata.2005.02.025
[40] C. L. Wu, Li Shen, H. G. Yu, Q. L. Huang and Y. C. Zhang, “Synthesis of Sn-Doped ZnO Nanorods and Their Photocatalytic Properties,” Materials Research Bulletin, Vol. 46, No. 7, 2011, pp. 1107-1112. doi:10.1016/j.materresbull.2011.02.043
[41] W. L. Xue, G. W. Zhang, X. F. Xu, X. L. Yang, C. J. Liu and Y. H. Xu, “Preparation of Titania Nanotubes Doped with Cerium and Their Photocatalytic Activity for Gly phosate,” Chemical Engineering Journal, Vol. 167, No. 1, 2011, pp. 397-402. doi:10.1016/j.cej.2011.01.007
[42] T.-X. Liua, X.-Z. Li and F.-B. Li, “Enhanced Photo catalytic Activity of Ce3+-TiO2 Hydrosols in Aqueous and Gaseous Phases,” Chemical Engineering Journal, Vol. 157, No. 2-3, 2010, pp. 475-482. doi:10.1016/j.cej.2009.12.010

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.