Share This Article:

Glucose initially inhibits and later stimulates blood ROS generation

Abstract Full-Text HTML XML Download Download as PDF (Size:1290KB) PP. 15-21
DOI: 10.4236/jdm.2013.31003    3,944 Downloads   6,257 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Background: Glucose is the main substrate for the generation of NADPH, the cofactor of the oxidative burst enzyme NADPH-oxidase of blood neutrophils. Changes in blood glucose are thus expected to modify the generation of reactive oxygen species (ROS). The new blood ROS generation assay (BRGA) quantifies ROS changes induced by blood glucose concentrations as they are found in diabetes mellitus. Material and Methods: Citrated or EDTA blood of 6 healthy donors were analyzed in the BRGA: 10 μl sample in black polystyrene F-microwells (Brand 781608) were incubated in triplicate with 125 μl Hanks’ balanced salt solution, 40 μl 0 - 200 mM glucose in 0.9% NaCl (final added conc.: 0 - 41 mM; final basal glucose conc.: about4 mM), 10 μl5 mMluminol, and 10 μl zymosan A (final conc.: 1.9 μg/ml) in 0.9% NaCl. The plates were measured within 0 - 250 min (37) in a photons-multiplyer microtiter plate luminometer (LUmo) with an integration time of 1 s. Results: Up to about 30 min reaction time the mean ROS generation was 50% inhibited by about1 mMadded glucose (= approx. IC50). At ≥80 min reaction time (possibly necessary for full phosphorylation of glucose to glucose-6-phosphate (G6P), the substrate metabolized by G6P-dehydrogenase to generate NADPH, the cofactor of the NADPH-oxidase) the mean ROS generation approximately doubled at about1 mMadded glucose (= approx. SC200) in citrated blood. Discussion: Elevated glucose concentrations not only increase systemic thrombin generation, they can also diminish cellular fibrinolysis and increase systemic inflammation, resulting in a chronic pro-thrombotic state. The fascinating importance of NADPH-oxidases not only in phagocytes but also in the beta cells of pancreas points towards a new pathogenesis explication of diabetes mellitus type 1: whatever stimulus (e.g. a pancreas-tropic virus) could activate the beta cell’s autodestructive NADPH-oxidase.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Stief, T. (2013) Glucose initially inhibits and later stimulates blood ROS generation. Journal of Diabetes Mellitus, 3, 15-21. doi: 10.4236/jdm.2013.31003.

References

[1] Bouma, G., Ancliff, P.J., Thrasher, A.J. and Burns, S.O. (2001) Recent advances in the understanding of genetic defects of neutrophil number and function. British Journal of haematology, 151, 312-326. doi:10.1111/j.1365-2141.2010.08361.x
[2] Valente, S.A., Fallon Jr., W.F., Alexander, T.S., Tomas, E.R., Evancho-Chapman, M.M., Schmidt, S.P., Gorski, R., Pizov, O., DeFine, L. and Clark, A.J. (2009) Immunologic function in the elderly after injury—The neutrophil and innate immunity. Clinical and Applied Thrombosis/ Hemostasis, 67, 968-974. doi:10.1097/TA.0b013e3181b84279
[3] Cowburn, A.S., Condliffe, A.M., Farahi, N., Summers, C. and Chilvers, E.R. (2008) Advances in neutrophil boilogy: Clinical implications. Chest, 134, 606-612. doi:10.1378/chest.08-0422
[4] Stief, T.W. and Fareed, J. (2000) The antithrombotic factor singlet oxygen/light (1O2/hν). Clinical and Applied Thrombosis/Hemostasis, 6, 22-30.
[5] Babior, B.M. (2004) NADPH oxidase. Current Opinion in Immunology, 16, 42-47. doi:10.1016/j.coi.2003.12.001
[6] Stief, T.W. (2009) Neutrophil granulocytes in hemostasis. Hemostasis Laboratory, 2, 269-289.
[7] Stief, T.W. (2013) The routine blood ROS generation assay (BRGA) triggered by typical septic concentrations of zymosan A. Hemostasis Laboratory, 6.
[8] Stief, T.W. (2013) Pathophysiologic routine blood hemostasis tests for the generation of reactive oxygen species. Hemostasis Laboratory, 6.
[9] Nielson, C.P. and Hindson, D.A. (1989) Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes, 38, 1031-1035. doi:10.2337/diabetes.38.8.1031
[10] Stief, T.W. (2010) Glucose triggers thrombin generation. Hemostasis Laboratory, 3, 93-103.
[11] Stief, T.W. (2011) Zn2+, hexane, or glucose activate factor 12 and/or prekallikrein in two purified systems. Hemostasis Laboratory, 4, 409-426.
[12] Stief, T.W. (2012) Glucose activates the early phase of intrinsic coagulation. Hemostasis Laboratory, 5, 67-81.
[13] Perner, A., Nielsen, S.E. and Rask-Madsen, J. (2003) High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Medicine, 29, 642-645.
[14] Guerra, B.A. and Otton, R. (2011) Impact of the carotenoid astaxanthin on phagocytic capacity and ROS/RNS production of human neutrophils treated with free fatty acids and high glucose. International Immunopharmacology, 11, 2220-2226. doi:10.1016/j.intimp.2011.10.004
[15] Inoguchi, T., Li, P., Umeda, F., Yu, H.Y., Kakimoto, M., Imamura, M., et al. (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes, 49, 1939-1945. doi:10.2337/diabetes.49.11.1939
[16] Omori, K., Ohira, T., Uchida, Y., Ayilavarapu, S., Batista, E.L., Yagi, M., et al. (2008) Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase. Journal of Leukocyte Biology, 84, 292-301. doi:10.1189/jlb.1207832
[17] Ayilavarapu, S., Kantarci, A., Fredman, G., Turkoglu, O., Omori, K., Liu, H., Iwata, T., Yagi, M., Hasturk, H. and Van Dyke, T.E. (2010) Diabetes-induced oxidative stress is mediated by Ca2+-independent phospholipase A2 in neutrophils. Journal of Immunology, 184, 1507-1515. doi:10.4049/jimmunol.0901219
[18] Alba-Loureiro, T.C., Hirabara, S.M., Mendon?a, J.R., Curi, R. and Pithon-Curi, T.C. (2006) Diabetes causes marked changes in function and metabolism of rat neutrophils. Journal of Endocrinology, 188, 295-303. doi:10.1677/joe.1.06438
[19] Kummer, U., Zobeley, J., Brasen, J.C., Fahmy, R., Kindzelskii, A.L., Petty, A.R., Clark, A.J. and Petty, H.R. (2007) Elevated glucose concentrations promote receptor-independent activation of adherent human neutrophils: An experimental and computational approach. Biophysical Journal, 92, 2597-2607. doi:10.1529/biophysj.106.086769
[20] Alba-Loureiro, T.C., Munhoz, C.D., Martins, J.O., Cerchiaro, G.A., Scavone, C., Curi, R. and Sannomiya, P. (2007) Neutrophil function and metabolism in individuals with diabetes mellitus. Brazilian Journal of Medical and Biological Research, 40, 1037-1044. doi:10.1590/S0100-879X2006005000143
[21] Musset, B., Cherny, V.V. and DeCoursey, T.E. (2012) Strong glucose dependence of electron current in human monocytes. American Journal of Cell Physiology, 302, C286-C295.
[22] Droge, W. (2002) Free radicals in the physiological control of cell function. Physiological Review, 82, 47-95. doi:10.1152/ajpcell.00335.2011
[23] Burg, N.D. and Pillinger, M.H. (2001) The neutrophil: Function and regulation in innate and humoral immunity. Clinical Immunology, 99, 7-17. doi:10.1006/clim.2001.5007
[24] Brasen, J.C., Barington, T. and Olsen, L.F. (2010) On the mechanism of oscillations in neutophils. Biophysical Chemistry, 148, 82-92. doi:10.1016/j.bpc.2010.02.013
[25] Dahlgren, C. and Karlsson, A. (1999) Respiratory burst in human neutrophils. Journal of Immunology Methods, 232, 3-14. doi:10.1016/S0022-1759(99)00146-5
[26] Sonck, E., Stuyven, E., Goddeeris, B. and Cox, E. (2010) The effect of beta-glucans on porcine leukocytes. Veterinary Immunology and Immunopathology, 135, 199-207. doi:10.1016/j.vetimm.2009.11.014
[27] Rubin-Bejerano, I., Abeijon, C., Magnelli, P., Grisafi, P. and Fink, G.R. (2007) Phagocytosis by human neutrophils is stimulated by a unique fungal cell wall component. Cell Host Microbe, 2, 55-67. doi:10.1016/j.chom.2007.06.002
[28] Stief, T.W. and Max, M. (2008) Active endotoxin in sepsis. Hemostasis Laboratory, 1, 53-60.
[29] Freitas, M., Porto, G., Lima, J.L. and Fernandes, E. (2009) Optimization of experimental settings for the analysis of human neutrophils oxidative burst in vitro. Talanta, 78, 1476-1483. doi:10.1016/j.talanta.2009.02.050
[30] Lojek, A., Kubala, L., Cízová, H. and Cíz, M. (2002) A comparison of whole blood neutrophil chemiluminescence measured with cuvette and microtitre plate luminometers. Luminescence, 17, 1-4. doi:10.1002/bio.664
[31] Stief, T.W. (2008) The laboratory diagnosis of the pre-phase of pathologic disseminated intravascular coagulation. Hemostasis Laboratory, 1, 2-20.
[32] Peluso, I., Morabito, G., Urban, L., Ioannone, F. and Serafini, M. (2012) Oxidative stress in atherosclerosis development: The central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets, 12, 351-360.
[33] King, G.L., Ishii, H. and Koya, D. (1997) Diabetic vascular dysfunctions: A model of excessive activation of protein kinase C. Kidney International, 60, S77-S85.
[34] Petty, H.R., Kindzelskii, A.L., Chaiworapongsa, T., Petty, A.R. and Romero, R. (2005) Oxidant release is dramatically increased by elevated glucose concentrations in neutrophils from pregnant women. Journal of Maternal-Fetal and Neonatal Medicine, 18, 397-404. doi:10.1080/14767050500361679
[35] Petty, H.R., Kindzelskii, A.L., Espinoza, J. and Romero, R. (2006) Trophoblast contact deactivates human neutronphils. Journal of Immunology, 176, 3205-3214.
[36] Stief, T.W. and Kurz, J. (2012) The natural anti-inflammatory agent PAI-2 suppresses the oxidative state of human blood. Hemostasis Laboratory, 5, 145-199.
[37] Ruiz, L.M., Bedoya, G., Salazar, J., García de, O.D. and Pati?o, P.J. (2002) Dexamethasone inhibits apoptosis of human neutrophils induced by reactive oxygen species. Inflammation, 26, 215-222. doi:10.1023/A:1019714618068
[38] Stief, T.W. and Mohrez, M. (2012) Glucose activates human intrinsic coagulation in vivo. Hemostasis Laboratory, 5, 83-89.
[39] Stief, T.W. (2012) The maximal plasma concentration of (delta-)negatively charged contact triggers influences plasmatic thrombin generation. In: Stief, T., Ed., Thrombin: Function and Pathophysiology. NOVA Science Publishers, New York, 37-46.
[40] Mohrez, M., Harb, H., Spies, A., Renz, H. and Stief, T.W. (2012) Systemic thrombin generation by glucose. Journal of Diabetes Mellitus, 2, 47-51. doi:10.4236/jdm.2012.21008
[41] Sasaki, S. and Inoguchi, T. (2012) The role of oxidative stress in the pathogenesis of diabetic vascular complications. Diabetes-Metabolism Journal, 36, 255-261. doi:10.4093/dmj.2012.36.4.255
[42] Hadi, H.A. and Suwaidi, J.A. (2007) Endothelial dysfunction in diabetes mellitus. Vascular Health Risk Management, 3, 853-876.
[43] Stief, T.W. (2012) Thrombin-applied clinical biochemistry of the main factor of coagulation. In: Stief, T., Ed., Thrombin: Function and Pathophysiology, Nova Science Publishers, New York, vii-xx. https://www.novapublishers.com/catalog/product_info.php?products_id=33386
[44] Oliveira, H.R., Verlengia, R., Carvalho, C.R., Britto, L.R., Curi, R. and Carpinelli, A.R. (2003) Pancreatic beta-cells express phagocyte-like NAD(P)H oxidase. Diabetes, 52, 1457-1463. doi:10.2337/diabetes.52.6.1457
[45] Mena, I., Fischer, C., Gebhard, J.R., Perry, C.M., Harkins, S. and Whitton, J.L. (2000) Coxsackie virus infection of the pancreas: Evaluation of receptor expression, pathogenesis, and immunopathology. Virology, 271, 276-288. doi:10.1006/viro.2000.0332
[46] Vanlioglu, B. and Chua, T.C. (2011) Presentation of mumps infection as acute pancreatitis without parotitis. Pancreas, 40, 167-168. doi:10.1097/MPA.0b013e3181eabd3c
[47] Jun, H.S. and Yoon, J.W. (2003) A new look at viruses in type 1 diabetes. Diabetes/Metabolism Research and Reviews, 19, 8-31. doi:10.1002/dmrr.337
[48] Briviba, K., Klotz, L.O. and Sies, H. (1997) Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biological Chemistry, 378, 1259-1265.
[49] Nathan, C. (2006) Neutrophils and immunity: Challenges and opportunities. Nature Reviews Immunology, 6, 173-182. doi:10.1038/nri1785
[50] Wu, L., Nicholson, W., Knobel, S.M., Steffner, R.J., May, J.M., Piston, D.W. and Powers, A.C. (2004) Oxidative stress is a mediator of glucose toxicity in insulin-secreting pancreatic islet cell lines. Journal of Biological Chemistry, 279, 12126-12134. doi:10.1074/jbc.M307097200

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.