Share This Article:

Controlling the Flow of Microscopic Particles—The Role of Beam Size

Abstract Full-Text HTML Download Download as PDF (Size:1842KB) PP. 294-299
DOI: 10.4236/opj.2012.24036    3,403 Downloads   5,261 Views  


Flow of micro particles and fluids is important in many microscopic systems. Here we present details of our finding of a directional flow of micro particles due to a single beam optical trap. It was found that the directional flow depends upon the size of optical trap, the number density of particles in the solution and the time after the trap was created. We suggest controlling the motion of microscopic particles in a fluid by varying a simple parameter like beam size for microfluidics applications.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Bhatt, A. Kumar, S. Jaaffrey and R. Singh, "Controlling the Flow of Microscopic Particles—The Role of Beam Size," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 294-299. doi: 10.4236/opj.2012.24036.


[1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, “Observation of a Single-Beam Gradient Force Optical trap for Dielectric Particles,” Optics Letters, Vol. 11, No. 5, 1986, pp. 288-290. doi:10.1364/OL.11.000288
[2] K. Svoboda and S. M. Block, “Biological Applications of Optical Forces,” Annual Review of Biophysics and Biomolecular Structure, Vol. 23, 1994, pp. 247-285. doi:10.1146/
[3] K. Dholakia, G. Spalding and M. MacDonald, “Optical Tweezers: The Next Generation,” Physics World, Vol. 15, 2002, pp. 31-35.
[4] D. G. Grier, “A Revolution in Optical Manipulation,” Nature, Vol. 424, No. 6950, 2003, pp. 810-816. doi:10.1038/nature01935
[5] R. Dasgupta, S. K. Mohanty and P. K. Gupta, “Controlled Rotation of Biological Microscopic Objects Using Optical Line Tweezers,” Biotechnology Letters, Vol. 25, No. 19, 2003, pp. 1625-1628. doi:10.1023/A:1025678320136
[6] C.-C. Huang, C.-F. Wang, D. S. Mehta and A. Chiou, “Optical Tweezers as Sub-Pico-Newton Force Transducers,” Optics Communication, Vol. 195, No. 1-4, 2001, pp. 41-48. doi:10.1016/S0030-4018(01)01329-3
[7] V. Garbin, et al., “Changes in Microbubble Dynamics near a Boundary Revealed by Combined Optical Micromanipulation and High-Speed Imaging,” Applied Physics Letters, Vol. 90, No. 11, 2007, p. 1.
[8] T. N. Buican, et al., “Automated Single-Cell Manipulation and Sorting by Light Trapping,” Applied Optics, Vol. 26, No. 24, 1987, pp. 5311-5316. doi:10.1364/AO.26.005311
[9] P. G. Schiro, C. L. Dubois and A. S. Kwok, “Large Capture-Range of a Single-Beam Gradient Optical Trap,” Optics Express, Vol. 11, No. 25, 2003, pp. 3485-3489. doi:10.1364/OE.11.003485
[10] K. C. Neuman and S. M. Block, “Optical Trapping,” Review of Scientific Instruments, Vol. 75, No. 9, 2004, pp. 2787-2809. doi:10.1063/1.1785844
[11] M. Kerker, “The Scattering of Light and Other Electromagnetic Radiation,” Academic Press, New York, 1969.
[12] A. Ashkin, “Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime,” Biophysical Journal, Vol. 61, No. 2, 1992, pp. 569-582. doi:10.1016/S0006-3495(92)81860-X
[13] T. Tlusty, A. Meller and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Physical Review Letters, Vol. 81, No. 8, 1998, pp. 1738-1741. doi:10.1103/PhysRevLett.81.1738
[14] C. Ropp, et al., “Manipulating Quantum Dots to Nanometer Precision by Control Of Flow,” Nano Letters, Vol. 10, No. 7, 2010, pp. 2525-2530. doi:10.1021/nl101105j
[15] R. D. Guy, T. Nagagaki and G. B. Wright, “Flow-Induced Channel Formation in the Cytoplasm of Motile Cells,” Physical Review E, Vol. 84, No. 1, 2011, Article ID: 016310.
[16] A. Rohrbach and E H. K. Stelzer, “Trapping Forces, Force Constants, and Potential Depths for Dielectric Spheres in the Presence of Spherical Aberrations,” Applied Optics, Vol. 41, No. 13, 2002, pp. 2494-2507. doi:10.1364/AO.41.002494
[17] X. C. Yao, Z. L. Li, H. L. Guo, B. Y. Cheng and D. Z. Zhang, “Effects of Spherical Aberration on Optical Trapping Forces for Rayleigh Particles,” Chinese Physics Letters, Vol. 18, No. 3, 2001, pp. 432-434. doi:10.1088/0256-307X/18/3/341
[18] E. Fallman and O. Axner, “Influence of a Glass-Water Interface on the On-Axis Trapping of Micrometer-Sized Spherical Objects by Optical Tweezers,” Applied Optics, Vol. 42, No. 19, 2003, pp. 3915-3926. doi:10.1364/AO.42.003915

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.